Chinese Journal of Organic Chemistry >
Application of Fluoroboron Fluoresceins (BODIPYS) and Their Derivatives in the Synergistic Diagnosis and Treatment of Tumor
Received date: 2018-12-10
Revised date: 2019-01-06
Online published: 2019-02-19
Supported by
Project supported by the National Natural Science Foundation of China (No. 21676187), and the China International Science and Technology Project (Nos. 2012DFG41980, 2016YFE0114900).
Tumor is one of the diseases with the highest mortality rate in the world. In view of the high risk and high mortality of tumor, researchers around the world are committed to develop more accurate and rapid diagnostic strategies and more effective treatments to fight tumor. Gradually, integrated optical diagnosis and treatment technologies for tumors have emerged. Fluoroboron fluorescein (BODIPY) has been widely used in tumor phototherapy because of its excellent optical properties. In this paper, BODIPY and its derivatives are introduced in detail as photosensitizers, photothermal transformants, and contrast agents in the diagnosis and treatment of tumors (photodynamic therapy, photothermal therapy, photoacoustic imaging) and integration of diagnosis and treatment. The effects of different BODIPY structures and their derivatives in tumor diagnosis and treatment were evaluated systematically. This is of great significance for the rational design of near-infrared BODIPY materials with high singlet oxygen quantum yield, high photothermal conversion, and good light stability and solubility.
Feng Tong , Xue Zhongbo , Yin Juanjuan , Jiang Xu , Feng Yaqing , Meng Shuxian . Application of Fluoroboron Fluoresceins (BODIPYS) and Their Derivatives in the Synergistic Diagnosis and Treatment of Tumor[J]. Chinese Journal of Organic Chemistry, 2019 , 39(7) : 1891 -1912 . DOI: 10.6023/cjoc201812016
[1] Ranji-Burachaloo, H.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. ACS Nano 2018.
[2] Matsui, H.; Hazama, S.; Shindo, Y.; Nagano, H. Expert Rev. Anticancer Ther. 2018, 18, 1205.
[3] Bertrand, B.; Passador, K.; Goze, C.; Denat, F.; Bodio, E.; Salmain, M. Coord. Chem. Rev. 2018, 358, 108.
[4] Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K. Chem. Soc. Rev. 2013, 42, 77.
[5] Yao, L.; Xiao, S.; Dan, F. J. Chem. 2013, 2013, 10.
[6] Zhao, J.; Xu, K.; Yang, W.; Wang, Z.; Zhong, F. Chem. Soc. Rev. 2015, 44, 8904.
[7] Awuah, S. G.; You, Y. RSC Adv. 2012, 2, 11169.
[8] Durantini, A. M.; Heredia, D. A.; Durantini, J. E.; Durantini, E. N. Eur. J. Med. Chem. 2018, 144, 651.
[9] Zhang, J.; Jiang, C.; Figureueiro Longo, J. P.; Azevedo, R. B.; Zhang, H.; Muehlmann, L. A. Acta Pharm. Sin. B 2018, 8, 137.
[10] Zou, J.; Yin, Z.; Wang, P.; Chen, D.; Shao, J.; Zhang, Q.; Sun, L.; Huang, W.; Dong, X. Chem. Sci. 2018, 9, 2188.
[11] Raza, M. K.; Gautam, S.; Howlader, P.; Bhattacharyya, A.; Kondaiah, P.; Chakravarty, A. R. Inorg. Chem. 2018, 57, 14374.
[12] Wang, Q.; Ng, D. K.; Lo, P.-C. J. Mater. Chem. B 2018, 6, 3285.
[13] Ruan, Z.; Miao, W.; Yuan, P.; Le, L.; Jiao, L.; Hao, E.; Yan, L. Bioconjugate Chem. 2018, 29, 3441.
[14] Yuan, P.; Ruan, Z.; Jiang, W.; Liu, L.; Dou, J.; Li, T.; Yan, L. J. Mater. Chem. B 2018, 6, 2323.
[15] Yuan, P.; Ruan, Z.; Li, T.; Tian, Y.; Cheng, Q.; Yan, L. Nanomedicine 2018, 15, 198.
[16] Ruan, Z.; Zhao, Y.; Yuan, P.; Liu, L.; Wang, Y.; Yan, L. J. Mater. Chem. B 2018, 6, 753.
[17] Liu, L.; Li, T.; Ruan, Z.; Yan, L. J. Mater. Sci. 2018, 53, 9368.
[18] Chen, H.; Bi, Q.; Yao, Y.; Tan, N. J. Mater. Chem. B 2018, 6, 4351.
[19] Wang, W.; Wang, L.; Li, Z.; Xie, Z. Chem. Commun. 2016, 52, 5402.
[20] Guan, Q.; Zhou, L. L.; Li, Y. A.; Dong, Y. B. Inorg. Chem. 2018, 57, 10137.
[21] Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Chem. Soc. Rev. 2019.
[22] Kim, S. H.; Lee, J. E.; Sharker, S. M.; Jeong, J. H.; In, I.; Park, S. Y. Biomacromolecules 2015, 16, 3519.
[23] Liu, Y.; Song, N.; Chen, L.; Liu, S.; Xie, Z. Chem. Asian J. 2018, 13, 989.
[24] Xu, Y.; Feng, T.; Yang, T.; Wei, H.; Yang, H.; Li, G.; Zhao, M.; Liu, S.; Huang, W.; Zhao, Q. ACS Appl. Mater. Interfaces 2018, 10, 16299.
[25] Zhu, Y.; Lin, W.; Wang, X.; Zhang, W.; Chen, L.; Xie, Z. Chem. Commun. 2018, 54, 11921.
[26] Lin, W.; Sun, T.; Xie, Z.; Gu, J.; Jing, X. Chem. Sci. 2016, 7, 1846.
[27] Sharker, S. M.; Kang, E. B.; Shin, C. I.; Kim, S. H.; Lee, G.; Park, S. Y. J. Appl. Polym. Sci. 2016, 133.
[28] Kang, E. B.; Lee, J. E.; Jeong, J. H.; Lee, G.; In, I.; Park, S. Y. J. Ind. Eng. Chem. 2016, 33, 336.
[29] Li, J.; Rao, J.; Pu, K. Biomaterials 2018, 155, 217.
[30] Lyu, Y.; Zeng, J.; Jiang, Y.; Zhen, X.; Wang, T.; Qiu, S.; Lou, X.; Gao, M.; Pu, K. ACS Nano 2018, 12, 1801.
[31] Zhou, E. Y.; Knox, H. J.; Reinhardt, C. J.; Partipilo, G.; Nilges, M. J.; Chan, J. J. Am. Chem. Soc. 2018, 140, 11686.
[32] Frenette, M.; Hatamimoslehabadi, M.; Bellinger-Buckley, S.; Laoui, S.; La, J.; Bag, S.; Mallidi, S.; Hasan, T.; Bouma, B.; Yelleswarapu, C. J. Am. Chem. Soc. 2014, 136, 15853.
[33] Laoui, S.; Bag, S.; Dantiste, O.; Frenette, M.; Hatamimoslehabadi, M.; Bellinger-Buckley, S.; Tseng, J. C.; Rochford, J.; Yelleswarapu, C. Inter. Soc. Opt. 2014, 89, 5609.
[34] Ni, Y.; Kannadorai, R. K.; Peng, J.; Yu, S. W.; Chang, Y. T.; Wu, J. Chem. Commun. 2016, 52, 11504.
[35] Ni, Y.; Kannadorai, R. K.; Yu, S. W.; Chang, Y. T.; Wu, J. Org. Biomol. Chem. 2017, 15, 4531.
[36] Chen, Q.; Liu, X.; Chen, J.; Zeng, J.; Cheng, Z.; Liu, Z. Adv. Mater. 2015, 27, 6820.
[37] Liu, X.; Zhao, M.; Chen, P.; Fan, Q.; Wang, W.; Huang, W. J. Mater. Chem. B 2018, 6, 4531.
[38] Miki, K.; Enomoto, A.; Inoue, T.; Nabeshima, T.; Saino, S.; Shimizu, S.; Matsuoka, H.; Ohe, K. Biomacromolecules 2017, 18, 249.
[39] Zhao, M.; Xu, Y.; Xie, M.; Zou, L.; Wang, Z.; Liu, S.; Zhao, Q. Adv. Healthcare Mater. 2018, 7, 1800606.
[40] Wang, Q.; Tian, L.; Xu, J.; Xia, B.; Li, J.; Lu, F.; Lu, X.; Wang, W.; Huang, W.; Fan, Q. Chem. Commun. 2018, 54, 10328.
[41] Chen, D.; Zhang, J.; Tang, Y.; Huang, X.; Shao, J.; Si, W.; Ji, J.; Zhang, Q.; Huang, W.; Dong, X. J. Mater. Chem. B 2018, 6, 4522.
[42] Liu, Y.; Song, N.; Li, Z.; Chen, L.; Xie, Z. Dyes Pigm. 2019, 160, 71.
[43] Lu, W. L.; Lan, Y. Q.; Xiao, K. J.; Xu, Q. M.; Qu, L. L.; Chen, Q. Y.; Huang, T.; Gao, J.; Zhao, Y. J. Mater. Chem. B 2017, 5, 1275.
[44] Zou, J.; Wang, P.; Wang, Y.; Liu, G.; Zhang, Y.; Zhang, Q.; Shao, J.; Si, W.; Huang, W.; Dong, X. Chem. Sci. 2018.
[45] Ye, S.; Rao, J.; Qiu, S.; Zhao, J.; He, H.; Yan, Z.; Yang, T.; Deng, Y.; Ke, H.; Yang, H.; Zhao, Y.; Guo, Z.; Chen, H. Adv. Mater. 2018, 1801216.
[46] Gawale, Y.; Adarsh, N.; Kalva, S. K.; Joseph, J.; Pramanik, M.; Ramaiah, D.; Sekar, N. Chemistry 2017, 23, 6570.
[47] Tang, Q.; Si, W.; Huang, C.; Ding, K.; Huang, W.; Chen, P.; Zhang, Q.; Dong, X. J. Mater. Chem. B 2017, 5, 1566.
[48] Tang, Q.; Xiao, W.; Huang, C.; Si, W.; Shao, J.; Huang, W.; Chen, P.; Zhang, Q.; Dong, X. Chem. Mater. 2017, 29, 5216.
[49] Xiao, W.; Wang, P.; Ou, C.; Huang, X.; Tang, Y.; Wu, M.; Si, W.; Shao, J.; Huang, W.; Dong, X. Biomaterials 2018, 183, 1.
[50] Hu, W.; Ma, H.; Hou, B.; Zhao, H.; Ji, Y.; Jiang, R.; Hu, X.; Lu, X.; Zhang, L.; Tang, Y.; Fan, Q.; Huang, W. ACS Appl. Mater. Interfaces 2016, 8, 12039.
[51] Chen, D.; Tang, Q.; Zou, J.; Yang, X.; Huang, W.; Zhang, Q.; Shao, J.; Dong, X. Adv. Healthcare Mater. 2018, 7, 1701272.
[52] He, H.; Ji, S.; He, Y.; Zhu, A.; Zou, Y.; Deng, Y.; Ke, H.; Yang, H.; Zhao, Y.; Guo, Z.; Chen, H. Adv. Mater. 2017, 29.
[53] Ramu, V.; Gautam, S.; Garai, A.; Kondaiah, P.; Chakravarty, A. R. Inorg. Chem. 2018, 57, 1717.
[54] Wang, X.; Lin, W.; Zhang, W.; Li, C.; Sun, T.; Chen, G.; Xie, Z. J. Colloid Interface Sci. 2018, 536, 208.
[55] Guo, Z.; Zou, Y.; He, H.; Rao, J.; Ji, S.; Cui, X.; Ke, H.; Deng, Y.; Yang, H.; Chen, C.; Zhao, Y.; Chen, H. Adv. Mater. 2016, 28, 10155.
[56] Zhou, J.; Zhang, Y.; Yu, G.; Crawley, M. R.; Fulong, C. R. P.; Friedman, A. E.; Sengupta, S.; Sun, J.; Li, Q.; Huang, F.; Cook, T. R. J. Am. Chem. Soc. 2018, 140, 7730.
/
〈 |
|
〉 |