Chinese Journal of Organic Chemistry >
Efficient Synthesis of Unsymmetrical Selenides Promoted by Titanocene Perfluorobutanesulfonate/Zinc Catalytic System
Received date: 2018-12-19
Revised date: 2019-02-03
Online published: 2019-02-22
Supported by
Project supported by the the National Natural Science Foundation of China (No. 21802093), the Shanxi Province Science Foundation for Youths (No. 201701D221035), and the PhD Start-up Foundation of Shanxi Medical University (No. 03201501).
In the presence of 10 mol% titanocene perfluorobutanesulfonate (1·H2O·THF), reductive cleavage Se-Se bond by zinc dust (1.2 equiv.) at room temperature led to nucleophilic selenium anion species, which reacted with bromoalkanes to afford unsymmetrical selenides in good to excellent yield using commercial tetrahydrofuran (THF) as solvent under N2 atmosphere. The possible reaction mechanism is that zinc dust reduces Cp2TiIV(OPf)2 (Pf=SO2C4F9) to produce Cp2TiⅢOPf, which reacts with diaryl diselenides to form the intermediate Cp2TiIVSeAr(OPf). Then it further reacts with bromoalkanes to produce unsymmetrical selenides. In this paper, the synthesis of asymmetrical selenides catalyzed by 1·H2O·THF/Zn system is first reported. This method has the advantages of mild reaction conditions, simple operation and high yield.
Wang Lingxiao , Li Ningbo , Wang Haojiang , Liu Wen , Diao Haipeng , Xu Xinhua . Efficient Synthesis of Unsymmetrical Selenides Promoted by Titanocene Perfluorobutanesulfonate/Zinc Catalytic System[J]. Chinese Journal of Organic Chemistry, 2019 , 39(6) : 1802 -1807 . DOI: 10.6023/cjoc201812033
[1] Sarma, B. L.; Mugesh, G. J. Am. Chem. Soc. 2005, 127, 11477.
[2] Bhadra, S.; Saha, A.; Ranu, B. C. J. Org. Chem. 2010, 75, 4864.
[3] Zhang, X. P.; Miao, J. H.; Sun, Y. B.; Chin. J. Org. Chem. 2009, 29, 1555 (in Chinese).(张晓鹏, 苗江欢, 孙玉标, 有机化学, 2009, 29, 1555.)
[4] Sohn, T. I.; Kim, M. J.; Kim, D. J. J. Am. Chem. Soc. 2010, 132, 12226.
[5] Li, Y. Y.; Chen, S. H.; Su, L.; Li, J. H.; Xu, X. H. Chin. J. Org. Chem. 2013, 33, 1999 (in Chinese).(李媛媛, 陈四海, 苏柳, 李建华, 许新华, 有机化学, 2013, 33, 1999).
[6] Narayanaperumal, S.; Alberto, E. E.; Gul, K.; Kawasoko, C. Y.; Dornelles, L.; Rodrigues, O. E. D.; Braga, A. L. Tetrahedron Lett. 2011, 67, 4723.
[7] Banerjee, S.; Adak, L.; Ranu, B. C. Tetrahedron Lett. 2012, 53, 2149.
[8] Gogoi, P.; Hazarika, S.; Sarma, M. J.; Sarma, K. Tetrahedron 2014, 70, 7484.
[9] Braga, A. L.; Schneider, P. H.; Paixão, M. W.; Deobald, A. M. Tetrahedron Lett. 2006, 47, 7195.
[10] Clive, D. L. J. Tetrahedron, 1978, 34, 1049.
[11] Xu, X. H.; Chen, W. L.; Huang, X. Chin. J. Synth. Chem. 2000, 8, 281 (in Chinese).(许新华, 陈万里, 黄宪, 合成化学, 2000, 8, 281.)
[12] Su, W. K.; Zhang, Y. M.; Li, Y. S. Chin. J. Chem. 2001, 19, 381.
[13] Lu, G. L; Zhang, Y. M. Synth. Commun. 1998, 28, 4479.
[14] Sun, P. P.; Xiao, Y. P.; Shi, B. C. Chin. Chem. Lett. 2000, 11, 1037.
[15] Chen, R. E.; Su, W. K.; Zhong, W. H. J. Chem. Res. 2005, 2005, 620.
[16] Zhao, X. D.; Yu, Z. K.; Yan, S. G.; Wu, S. Z.; Liu, R.; He, W.; Wang, L. D. J. Org. Chem. 2005, 70, 7338.
[17] Wang, Z.; Mo, H.; Bao, W. Synlett 2007, 91.
[18] Chen, R. E.; Su, W. K. J. Indian Chem. Soc. 2005, 82, 958.
[19] Nishino, T.; Okada, M.; Kuroki, T.; Watanabe, T.; Nishiyama, Y.; Sonoda, N. J. Org. Chem. 2002, 67, 8696.
[20] Ranu. B. C.; Mandal, T. J. Org. Chem, 2004, 59, 5793.
[21] Ouyang. Y. J.; Guo, C. X.; Qiu, R. H; Li. N. B.; Chen, J. Y.; Xu, X. H. Chin. J. Org. Chem. 2015, 35, 731 (in Chinese).(欧阳跃军, 郭翠霞, 邱仁华, 李宁波, 陈锦杨, 许新华, 有机化学, 2015, 35, 731.)
[22] Thomas, J.; Klahn, M.; Spannenberg, A.; Beweries, T. Dalton Trans. 2013, 42, 14668.
[23] Gansäuer, A.; Hildebrandt, S.; Michelmann, A.; Dahmen, T.; von Laufenberg, D.; Kube, C.; Fianu, G. D.; Flowers, R. A. Angew. Chem., Int. Ed. 2015, 54, 7003.
[24] Hildebrandt, S.; Gansäuer, A. Angew. Chem., Int. Ed. 2016, 55, 9719.
[25] Hollis, T. K.; Robinson, N. P.; Bosnich, B. Tehahedron Lett. 1992, 33, 6423.
[26] An, D. L.; Peng, Z. H.; Orita, A.; Kurita, A.; Man-e, S.; Ohkubo, K.; Li, X. S.; Fukuzumi, S.; Otera, J. Chem.-Eur. J. 2006, 12, 1642.
[27] Li, N. B.; Wang, J. Y.; Zhang, X. H.; Qiu, R. H.; Wang, X.; Chen, J. Y.; Yin, S. F.; Xu, X. H. Dalton Trans. 2014, 43, 11696.
[28] Qiu, R. H.; Xu, X. H.; Peng, L. F.; Zhao, Y. L.; Li, N. B.; Yin, S. F. Chem.-Eur. J. 2012, 18, 6172.
[29] Llorca, M.; Farré, M.; Tavano, M.; Alonso, S. B.; Koremblit, G.; Barceló, D. Environ. Pollut. 2012, 163, 158.
[30] Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. Toxicol. Sci. 2007, 99, 366.
[31] Li, N. B.; Yao, J.; Wang, L. X.; Wei, J. C.; Liu, W.; Liu, W. Q.; Xu, X. H.; Liang, Z. W. Inorg. Chem. Commun. 2018, 98, 99.
[32] Tang, Z.; Jiang, Q. T.; Peng, L. F.; Xu, X. H.; Li, J.; Qiu, R. H.; Au, C. T. Green Chem. 2017, 19, 5396.
[33] Gul, K.; Narayanaperumal, S.; Dornelles, L.; Rodrigues, O. E. D. Tetrahedron Lett. 2011, 52, 3592.
[34] Chen, Q. R.; Wang, P. P.; Yan, T.; Cai M. Z. J. Organomet. Chem. 2017, 840, 38.
[35] Gianino, J. B.; Ashfeld, B. L. J. Am. Chem. Soc. 2012, 134, 18217.
[36] Kazunori H.; Hideki, S.; Yu, K.; Jun-ichi M.; Soichi, S.; Toshio, S.; Nobumasa, K. Chem. Lett. 2007, 36, 826.
/
〈 |
|
〉 |