Chinese Journal of Organic Chemistry >
Application of 3D Printing Technology in Organic Synthetic Chemistry
Received date: 2019-01-02
Revised date: 2019-03-12
Online published: 2019-03-29
Supported by
Project supported by the Natural Science Foundation of Fujian Province (No. 2016J01063), the Program for New Century Excellent Talents in Fujian Province (No. 2012FJ-NCET-ZR03) and the University Distinguished Young Research Talent Training Program of Fujian Province (No. 11FJPY02), the National Marine Economic Innovation and Development Project (No. 16PYY007SF17) and the Subsidized Project for Postgraduates' Innovative Fund in Scientific Research of Huaqiao University.
Compared with traditional material removal-cutting method, 3D printing is a "bottom-up" material accumulation manufacturing technology. This novel technology is not only simple to operate, but also has a lower manufacturing cost and can be quickly generated. What's more, 3D printing technology can fabricate the be-spoke objects with intricate internal structures. Therefore, 3D printing has been a representative technology of the third industrial revolution. In recent years, chemists have combined 3D printing technology with organic synthesis and made many good achievements in the development of new multichannel heterogeneous catalysts and reaction devices, which has made this technology more and more widely used in the field of organic synthesis. In this review, the progress of the organic synthesis based on 3D printing technology from 2012 to 2018 are summarized, such as 3D-printed heterogeneous catalysts, 3D-printed devices and 3D-printed continuous flow microreactors. Furthermore, the development trends of this field in the future are also prospected.
Lai Shilin , Liao Xu , Zhang Hui , Jiang Yan , Liu Yuangang , Wang Shibin , Xiong Xingquan . Application of 3D Printing Technology in Organic Synthetic Chemistry[J]. Chinese Journal of Organic Chemistry, 2019 , 39(7) : 1858 -1866 . DOI: 10.6023/cjoc201901001
[1] Hull, C. W. US 04575330, 1986.
[2] Huang, W. D. J. New Industrialization 2016, 6, 53 (in Chinese). (黄卫东, 新型工业化, 2016, 6, 53.)
[3] Gunther, D.; Heymel, B.; Gunther, J. F.; Ederer, I. Rapid Prototyping J. 2014, 20, 320.
[4] Ding, Y. C. Minying Keji 2018, (7), 166(in Chinese). (丁有成, 民营科技, 2018, (7), 166.)
[5] Zhang, M.; Jiang, M.-H.; Wu, G.-H.; Yang, Q.-L. Beverage Ind. 2015, 18, 57(in Chinese). (张明, 姜明洪, 吴光虹, 杨秋玲, 饮料工业, 2015, 18, 57.)
[6] Jing, L. G.; Shen, L. J. Biology Teaching 2016, 41, 6(in Chinese). (井乐刚, 沈丽君, 生物学教学, 2016, 41, 6.)
[7] Hu, Y. P. Mech. Res. Appl. 2016, 29, 193(in Chinese). (胡彦萍, 机械研究与应用, 2016, 29, 193.)
[8] Zhu, G.; Mo, W.-J. Val. Eng. 2015, 34, 178(in Chinese). (朱阁,莫蔚靖, 价值工程, 2015, 34, 178.)
[9] Paulsen, S. J.; Miller, J. S. Dev. Dynam. 2015, 244, 320.
[10] He, C. L.; Tang, Z. H.; Tian, H. Y.; Chen, X. S. Acta Polym. Sin. 2013, (6), 722 (in Chinese). (贺超良, 汤朝晖, 田华雨, 陈学思, 高分子学报, 2013, (6), 722.)
[11] Zhang, X. J.; Tang, S. Y.; Zhao, H. Y.; Guo, S. Q.; Li, N.; Chen, B. Q. J. Mater. Eng. 2016, 44, 122 (in Chinese). (张学军, 唐思熠, 肇恒跃, 郭绍庆, 李能, 孙兵兵, 陈冰清, 材料工程, 2016, 44, 122.)
[12] Chen, S. P.; Yi, H.-P.; Luo, Z. H.; Zhu Ge, X. Q.; Luo, K. Mater. Rev. 2016, 30, 54 (in Chinese). (陈硕平, 易和平, 罗志虹, 诸葛祥群, 罗鲲, 材料导报, 2016, 30, 54.)
[13] Li, X.-L.; Ma, J.-X.; Li, P.; Chen, Q.; Zhou, W.-M. Proc. Autom. Instrum. 2014, 35, 1 (in Chinese). (李小丽, 马剑雄, 李萍, 陈琪, 周伟民, 自动化仪表, 2014, 35, 1.)
[14] Rossi, S.; Puglisi, A.; Benaglia, M. ChemCatChem 2018, 10, 1512.
[15] Tubío, C. R.; Azuaje, J.; Escalante, L.; Coelho, A.; Guitián, F.; Sotelo, E.; Gil, A. J. Catal. 2016, 334,110.
[16] Azuaje, J.; Tubío, C. R.; Escalante, L.; Gómez, M.; Guitián, F.; Coelho, A.; Caamaño, O.; Gil, A.; Sotelo, E. Appl. Catal. A-Gen. 2017, 530, 203.
[17] Manzano, J. S.; Weinstein, Z. B.; Sadow, A. D.; Slowing, I. I. ACS Catal. 2017, 7, 7567.
[18] Díaz-Marta, A. S.; Tubío, C. R.; Carbajales, C.; Fernandez, C.; Escalante L.; Sotelo, E.; Guitian, F.; Barrio, V. L.; Gil, A.; Coelho, A. ACS Catal. 2018, 8, 392.
[19] Symes, M. D.; Kitson, P. J.; Yan, J.; Richmond, C. J.; Cooper, G. J.; Bowman, R. W.; Vilbrandt, T.; Cronin, L. Nat. Chem. 2012, 4, 349.
[20] Johnson, R. D. Nat. Chem. 2012, 4, 338.
[21] Kitson, P. J.; Symes, M. D.; Dragone, V.; Cronin, L. Chem. Sci. 2013, 4, 3099.
[22] Kitson, P. J.; Glatzel, S.; Chen, W.; Lin, C. G.; Song, Y. F.; Cronin, L. Nat. Protoc. 2016, 11, 920.
[23] Mathieson, J. S.; Rosnes, M. H.; Sans, V.; Kitson, P. J.; Cronin, L. Beilstein J. Nanotechnol. 2013, 4, 285.
[24] Kitson, P. J.; Glatzel, S.; Cronin, L. Beilstein J. Org. Chem. 2016, 12, 2776.
[25] Zalesskiy, S. S.; Shlapakov, N. S.; Ananikov, V. P. Chem. Sci. 2016, 7, 6740.
[26] Kucherov, F. A.; Gordeev, E. G.; Kashin, A. S.; Ananikov, V. P. Angew. Chem. 2017, 29, 16147.
[27] Gordeev, E. G.; Degtyareva, E. S.; Ananikov, V. P. Russ. Chem. B 2016, 65, 1637.
[28] Lederle, F.; Meyer, F.; Kaldun, C.; Namyslo, J. C.; Hübner, E. G. New J. Chem. 2017, 41, 1925.
[29] Kitson, P. J.; Rosnes, M. H.; Sans, V.; Dragone, V.; Cronin, L. Lab Chip. 2012, 12, 3267.
[30] Dragone, V.; Sans, V.; Rosnes, M. H.; Kitson, P. J.; Cronin, L. Beilstein J. Org. Chem. 2013, 9, 951.
[31] Elias, Y.; von Rohr, P. R.; Bonrath, W.; Medlock, J.; Buss, A. Chem. Eng. Process 2015, 95, 175.
[32] Avril, A.; Hornung, C. H.; Urban, A.; Fraser, D.; Horne, M.; Veder, J. P.; Tsanaktsidis, J.; Rodopoulos, T.; Henry, C.; Gunasegaram, D. R. React. Chem. Eng. 2017, 2, 180.
[33] Hornung, C. H.; Nguyen, X.; Carafa, A.; Gardiner, J.; Urban, A.; Fraser, D.; Horne, M. D.; Gunasegaram, D. R.; Tsanaktsidis, J. Org. Process Res. Dev. 2017, 21, 1311.
[34] Capel, A. J.; Wright, A.; Harding, M. J.; Weaver, G. W.; Li, Y.; Harris, R. A.; Edmondson, S.; Goodridge, R. D.; Christie, S. D. Beilstein J. Org. Chem. 2017, 13, 111.
[35] Rossi, S.; Porta, R.; Brenna, D.; Puglisi, A.; Benaglia, M. Angew. Chem. 2017, 129, 4354.
[36] Rao, Z. X.; Patel, B.; Monaco, A.; Cao, Z. J.; Barniol-Xicota, M.; Pichon, E.; Ladlow, M.; Hilton, S. Eur. J. Org. Chem. 2017, 44, 6499.
[37] Bettermann, S.; Schroeter, B.; Morit, H.-U.; Pauer, W.; Fassbender, W.; Luinstra, G. A. Chem. Eng. J. 2018, 338, 311.
[38] Genet, C.; Nguyen, X.; Bayatsarmadi, B.; Horne, M. D.; Gardiner, J.; Hornung, C. H. J. Flow. Chem. 2018, 8, 81.
[39] Kitson, P. J.; Marie, G.; Francoia, J.-P.; Zalesskiy, S. S.; Sigerson, R. C.; Mathieson, J. S.; Cronin, L. Science 2018, 359, 314.
[40] Huang, J.; Jiang, S. Adv. Mater. Ind. 2013, (1), 62 (in Chinese). (黄健, 姜山, 新材料产业, 2013, (1), 62.)
/
〈 |
|
〉 |