Chinese Journal of Organic Chemistry >
Synthesis and Fungicidal Activity of Novel Oxathiapiprolin Derivatives
Received date: 2019-01-07
Revised date: 2019-02-27
Online published: 2019-03-29
Supported by
Project supported by the Collaborative Innovation Center of Zhejiang Province Green Pesticide
In order to explore the structure of lead compounds with biological activities, using oxathiapiprolin as a template, sixteen oxathiapiprolin derivatives were designed and synthesized to study the influences of substituent to the fungicidal activities which connected with carbon (No. 5 carbon) near the sulfur on the thiazole ring. All the structures were confirmed by 1H NMR, 13C NMR and HRMS. Preliminary bioassay showed that the target compounds generally had fungicidal activitives in vitro at a concentration of 100 μg/mL, the fungicidal activities of 1-(4-(4-cyclopropyl-5-(2-fluorophenyl)thiazol-2-yl)piperidin- 1-yl)-2-(5-methyl-3-trifluoromethyl-1H-pyrazol-1-yl)ethan-1-one (9o) against Fusarium graminearum was 60%, the fungicidal activities of six target compounds against Diplocarpon mali were 70%, the fungicidal activities of four target compounds against Phytophthora infestans were 50%, and the fungicidal activities of 2-(5-methyl-3-trifluoromethyl-1H-pyrazol-1- yl)-1-(4-(4-methyl-5-(m-tolyl)thiazol-2-yl)piperidin-1-yl)ethan-1-one (9h) against Botrytis cinerea was 75%. In addtion, the fungicidal activities of the target compounds aganist Diplocarpon mali and Botrytis cinerea at 100 μg/mL were higher to azoxystrobin at 50 μg/mL.
Key words: oxathiapiprolin; thiazole; fungicidal activity
Ding Chengrong , Pan Yayun , Yin Xu , Tan Chengxia , Wang Xuedong . Synthesis and Fungicidal Activity of Novel Oxathiapiprolin Derivatives[J]. Chinese Journal of Organic Chemistry, 2019 , 39(7) : 2062 -2069 . DOI: 10.6023/cjoc201901009
[1] Hanagan, M. A.; Pasteris, R. J. WO 2009094407, 2009[Chem. Abstr. 2009, 151, 234956].
[2] Cohen, Y.; Rubin, A. E.; Galperin, M. Phytoparasitica 2018, 46, 689.
[3] Miao, J. Q.; Chi, Y. D.; Lin, D.; Tyler, B. M.; Liu, X. L. Phytopathology. 2018, 108, 1412.
[4] Feng, X.; Wang, K.; Pan, L.; Xu, T.; Zhang, H.; Fantke, P. J. Agric. Food. Chem. 2018, 66, 8489.
[5] Kono, M.; Matsumoto, T.; Kawamura, T.; Nishimura, A.; Kiyota, Y.; Oki, H.; Miyazaki, J.; Lgaki, S.; Bdhnke, C. A.; Shimoji, M.; Koro, M. Bioorg. Med. Chem. 2013, 21, 28.
[6] Cohen, Y.; Rubin, A. E.; Galperin, M. Phytoparasitica 2018, 46, 689.
[7] Bittner, R. J.; Mila, A. L. Crop. Prot. 2017, 93, 9.
[8] Pasteris, R. J.; Hanagan, M. A.; Bisaha, J. J.; Finkelstein, B. L.; Hoffman, L. E.; Gregory, V.; Andreassi, J. L.; Sweigard, J. A.; Klyashchitsky, B. A.; Henry, Y. T.; Berger, R. A. Bioorg. Med. Chem. 2016, 24, 354.
[9] Yang, Z. H.; Tian, H.; Zhang, L. World Pestic. 2017, 39, 43(in Chinese). (杨子辉, 田昊, 张莉, 世界农药, 2017, 39, 43.)
[10] StLaurent, D. R.; Romine, J. L. Synthesis 2009, 1445.
[11] Chen, L.; Zhu, Y. J.; Fan, Z. J.; Guo, Z. M.; Zhang, Z. M.; Xu, Z. H.; Song, Y. Q.; Yurievich, M. Y.; Belskaya, N. B.; Bakulev, V. A. J. Agric. Food Chem. 2017, 65, 745.
[12] Hu, D. J.; Liu, S. F.; Huang, T. H.; Tu, H. Y.; Zhang, A. D. Molecules 2009, 14, 1288.
[13] Kamireddy, B.; Pasteris, R. J.; Hanagan, M. A. WO 2009094445, 2008[Chem. Abstr. 2009, 151, 173451].
[14] Pasteris, R. J.; Hanagan, M. A. WO 2008013925, 2008[Chem. Abstr. 2014, 160, 302215].
[15] Wu, Q. F.; Zhao, B.; Fan, Z. J.; Zhao, J. B.; Guo, X. F.; Yang, D. Y.; Zhang, N. L.; Yu, B.; Kalinina, T.; Glukhareva, T. RSC Adv. 2018, 8, 39593.
[16] Wu, Q. F.; Zhao, B.; Fan, Z. J.; Guo, X. F.; Yang, D. Y.; Zhang, N. L.; Yu, B.; Zhou, S.; Zhao, J. B.; Chen, F. J. Agric. Food Chem. 2019, 67, 1360.
[17] Pierre, C.; Nicola, R.; Tomoki, T.; Ulrike, W. N.; Arnd, V.; Juergen, B. WO 2010066353, 2010[Chem. Abstr. 2010, 153, 62249].
[18] Pierre, P.; Nicola, R.; Stefan, H.; Tomoki, T.; Ulrike, T. W.; Arnd, V.; Pierre, W.; Sebastian, H.; Juergen, B. WO 2010037479, 2010[Chem. Abstr. 2010, 152, 454087].
[19] Sulzermosse, S.; Cederbaum, F.; Lamberth, C.; Berthon, G.; Umarye, J.; Grasso, V.; Schlereth, A.; Blum, M.; Waldmeier, R. Bioorg. Med. Chem. 2015, 23, 2129.
[20] Choi, W. S.; Nam, S. W.; Kim, I. D.; Kim, S. H. J. Chem. 2015, 241793.
[21] Choi, W. S.; Nam, S. W.; Ahn, E. K. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 206.
[22] Britta, O.; Stefan, H.; Pierre, W.; Martin, W.; Ulrike, W. N. WO 2015055574, 2015[Chem. Abstr. 2015, 162, 560976].
[23] Hoemberger, G.; Ford, M. J. WO 2015181097, 2015[Chem. Abstr. 2015, 164, 36949].
[24] Huang, G.; Yang, J. C.; Li, H. C.; Zhang, J.; Liu, C. L. Agrochemicals 2011, 50, 79(in Chinese). (黄光, 杨吉春, 李慧超, 张静, 刘长令, 农药, 2011, 50, 79.)
[25] Chen, S.; He, D. M.; Dong, X.; Cui, J. G.; Gan, C. F.; Huang, Y. M. Modern Agrochem. 2017, 16, 8(in Chinese). (陈爽, 何冬梅, 董新, 崔建国, 甘春芳, 黄燕敏, 现代农药, 2017, 16, 8.)
[26] Li, L.; Chen, H.; Lin, Y. Synth. Commun. 2007, 37, 985.
[27] Hemming, K.; Khan, M.; Kondakal, V.; Pitard, A.; Amar, M.; Rice, C. ChemInform 2012, 43, 126.
[28] Zhu, F. Q; Aisa, H. A.; Zhang, J.; Sun, C. L.; He, Y.; Xie, Y. C.; Shen, J. S. Org. Proc. Res. Dev. 2018, 22, 91.
[29] Das, T.; Chakraborty, A.; Sarkar, A. Tetrahedron Lett. 2014, 55, 7198.
[30] Cristau, P.; Herrmann, S.; Rahn, N.; Voerste, A. WO 2009132785, 2009[Chem. Abstr. 2009, 151, 491110].
[31] Dai, H.; Liu, J. B.; Tao, W. F.; Miao, W. K.; Fang, J. X.; Wang, Q. M. Chin. J. Org. Chem. 2016, 36, 393(in Chinese). (戴红, 刘建兵, 陶伟峰, 苗文科, 方建新, 汪清民, 有机化学, 2016, 36. 393.)
/
〈 |
|
〉 |