Articles

Radical Oxidation of α-Hydroxyl Ester Initiated by Sodium Hypochlorite

  • Wang Maochang ,
  • Zhang Baohua ,
  • Ding Kai
Expand
  • a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444;
    b CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2019-01-15

  Revised date: 2019-03-12

  Online published: 2019-03-29

Abstract

Sodium hypochlorite has been used as a green oxidant in oxidation of alcohols. However, the oxidation of a-hydroxyl ester via sodium hypochloriteis difficult under the same conditions. Herein, an efficient method is developed for the oxidation of a-hydroxyl ester with sodium hypochlorite in the presence of hydrogenbromide. In this case, a reaction mechanism was proposed with the formation of free radicals as reactive intermediates, which was different from the mechanism of traditional Stevens oxidation. The method is also applied to the oxidation of common secondary alcohol and has good selectivity for multi-hydroxyl compounds.

Cite this article

Wang Maochang , Zhang Baohua , Ding Kai . Radical Oxidation of α-Hydroxyl Ester Initiated by Sodium Hypochlorite[J]. Chinese Journal of Organic Chemistry, 2019 , 39(7) : 1996 -2000 . DOI: 10.6023/cjoc201901019

References

[1] (a) Stevens, R. V.; Chapman, K. T.; Weller, H. N. J. Org. Chem. 1980, 45, 2030.
(b) Hirashita, T.; Sugihara, Y.; Ishikawa, S.; Naito, Y.; Matsukawa, Y.; Araki, S. Synlett 2018, 29, 2404.
[2] (a) Mirafzal, G. A.; Lozeva, A. M. Tetrahedron Lett. 1998, 39, 7263.
(b) Zhang, Y. J.; Born, S. C.; Jensen, K. F. Org. Process Res. Dev. 2014, 18, 1476.
(c) Leduc, A. B.; Jamison, T. F. Org. Process Res. Dev. 2012, 16, 1082.
[3] (a) Wolfe, S.; Hasan, S. K.; Campbell, J. R. J. Chem. Soc., Chem. Commun. 1970, 1420.
(b) Yamaoka, H.; Moriya, N.; Ikunaka, M. Org. Process Res. Dev. 2004, 8, 931.
[4] (a) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. J. Org. Chem. 1987, 52, 2559.
(b) Kloth, K.; Brunjes, M.; Kunst, E.; Joge, T.; Gallier, F.; Adibekian, A.; Kirschning, A. Adv. Synth. Catal. 2005, 347, 1423.
(c) Reddy, S. R.; Chadha, A. RSC Adv. 2013, 3, 14929.
[5] (a) Larsen, R. D.; Corley, E. G.; Davis, P.; Reider, P. J.; Grabowski, E. J. J. J. Am. Chem. Soc. 1989, 111, 7650.
(b) Gu, X.; Wang, L.; Gao, Y. F.; Ma, W.; Li, Y. M.; Gong, P. Tetrahedron:Asymmetry 2014, 25, 1573.
[6] (a) Stiller, E. T.; Harris, S. A.; Finkelstein, J.; Keresztesy, J. C.; Folkers, K. J. Am. Chem. Soc. 1940, 62, 1785.
(b) Parke, H. C.; Lawson, E. J. J. Am. Chem. Soc. 1941, 63, 2869.
(c) Mouterde, L. M. M.; Stewart, J. D. Org. Process Res. Dev. 2016, 20, 954.
[7] (a) Lipton, S. H.; Strong, F. M. J. Am. Chem. Soc. 1949, 71, 2364.
(b) Synoradzki, L.; Rowicki, T.; Wlostowski, M. Org. Process Res. Dev. 2006, 10, 103.
(c) Markert, M.; Scheffler, U.; Mahrwald, R. J. Am. Chem. Soc. 2009, 131, 16642.
(d) Heidlindemann, M.; Hammel, M.; Scheffler, U.; Mahrwald, R.; Hummel, W.; Berkessel, A.; Groger, H. J. Org. Chem. 2015, 80, 3387.
[8] (a) Boaz, N. W.; Mackenzie, E. B.; Debenham, S. D.; Large, S. E.; Ponasik, J. A. J. Org. Chem. 2005, 70, 1872.
(b) Pasquier, C.; Naili, S.; Pelinski, L.; Brocard, J.; Mortreux, A.; Agbossou, F. Tetrahedron:Asymmetry 1998, 9, 193.
(c) Shimizu, S.; Yamada, H.; Hata, H.; Morishita, T.; Akutsu, S.; Kawamura, M. Agric. Biol. Chem. 1987, 51, 289.
[9] (a) Iwahashi, M.; Naganawa, A.; Kinoshita, A.; Shimabukuro, A.; Nishiyama, T.; Ogawa, S.; Matsunaga, Y.; Tsukamoto, K.; Okada, Y.; Matsumoto, R.; Nambu, F.; Oumi, R.; Odagaki, Y.; Katagi, J.; Yano, K.; Tani, K.; Nakai, H.; Toda, M. Bioorg. Med. Chem. 2011, 19, 6935.
(b) Leduc, A. B.; Jamison, T. F. Org. Process Res. Dev. 2012, 16, 1082.
(c) Furukawa, I.; Sasaki, M.; Inoue, T.; Ohta, T. Phosphorus Sulfur Silicon Relat. Elem. 1998, 143, 85.
(d) Maekawa, H.; Ishino, Y.; Nishiguchi, I. Chem. Lett. 1994, 1017.
(e) Chang, H. S.; Woo, J. C.; Lee, K. M.; Ko, Y. K.; Moon, S. S.; Kim, D. W. Synth. Commun. 2002, 32, 31.
[10] Filler, R. Chem. Rev. 1963, 63, 21.
[11] Moriyama, K.; Takemura, M.; Togo, H. Org. Lett. 2012, 14, 2414.
[12] Griesbaum, K.; Meister, M. Chem. Ber. 1987, 120, 1573.
[13] Thiede, S.; Wosniok, P. R.; Herkommer, D.; Schulz-Fincke, A.-C.; Gütschow, M.; Menche, D. Org. Lett. 2016, 18, 3964.
[14] Grison, C.; Petek, S.; Coutrot, P. Tetrahedron 2005, 61, 7193.
[15] Lappalainen, K.; Kolehmainen, E.; Kaartinen, M.; Kauppinen, R.; Seppaelae, R.; Vatanen, V. Magn. Reson. Chem. 1994, 32, 786.
[16] Zhao, Z.-G.; Yan, P.; Liu, X.-L.; Shi, Z.-C. Lett. Org. Chem. 2012, 9, 604.
[17] Mitra, M. N.; Elliott, W. H. J. Org. Chem. 1968, 33, 2814.
[18] Stoltz, K. L.; Erickson, R.; Staley, C.; Weingarden, A. R.; Romens, E.; Steer, C. J; Khoruts, A.; Dosa, P. I. J. Med. Chem. 2017, 60, 3451.
[19] Zuercher, R. F. Helv Chim. Acta 1963, 46, 2054.
[20] Iida, T.; Nishida, S.; Chang, F. C.; Niwa, T.; Goto, J.; Nambara, T. Chem. Pharm. Bull. 1993, 41, 763.
[21] Kallner, A. Acta Chem. Scand. 1967, 21, 315.
[22] Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. J. Am. Chem. Soc. 2010, 132, 15328.
[23] Kurouchi, H.; Sugimoto, H.; Otani, Y.; Ohwada, T. J. Am. Chem. Soc. 2010, 132, 807.

Outlines

/