Chinese Journal of Organic Chemistry >
Synthesis of Polychloromethyl-Containing Indolines via Metal-Free Radical Arylpolychloromethylation of Unactivated Alkenes
Received date: 2019-01-28
Revised date: 2019-03-12
Online published: 2019-04-08
Supported by
Project supported by the National Natural Science Foundation of China (No. 21702083), the Program for Innovative Research Team (in Science and Technology) in Universities of Yunnan Province, the Program of Young Innovators of Education Department of Heilongjiang Province (No. UNPYSCT-2016181), and the Innovation Talents Foundation of Harbin of China (No. 2015RAQXJ061).
A metal-free polychloromethylation/cyclization cascade of N-allyl anlines is presented, which provides an access to polychloromethyl-substituted indolines with unactivated alkenes as radical acceptors and dicumyl peroxide (DCP) as the initiator. The inexpensive solvents of polychoromethanes (i.e., CH2Cl2, CHCl3 and CCl4) were used in the reaction as di-or trichloromethylating agents. This work has advantages of easy operation, mild conditions, low cost, and broad substrate scope.
Key words: unactivated alkenes; polychloromethylation; indolines; radical reaction
Li Wenlan , Sun Yitong , Yao Yongchao , Xu Ying , Li Peng , Liu Yingjie , Liang Deqiang . Synthesis of Polychloromethyl-Containing Indolines via Metal-Free Radical Arylpolychloromethylation of Unactivated Alkenes[J]. Chinese Journal of Organic Chemistry, 2019 , 39(6) : 1727 -1734 . DOI: 10.6023/cjoc201901047
[1] Gribble, G. W. J. Chem. Educ. 2004, 81, 1441.
[2] Berger, G.; Soubhye, J.; Meyer, F. Polym. Chem. 2015, 6, 3559.
[3] Harris, C. M.; Kannan, R.; Kopecka, H.; Harris, T. M. J. Am. Chem. Soc. 1985, 107, 6652.
[4] Sitachitta, N.; Rossi, J.; Roberts, M. A.; Gerwick, W. H.; Fletcher, M. D.; Willis, C. L. J. Am. Chem. Soc. 1998, 120, 7131.
[5] Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.
[6] Blasiak, L. C.; Vaillancourt, F. H.; Walsh, C. T.; Drennan, C. L. Nature 2006, 440, 368.
[7] Chang, Z.; Flatt, P.; Gerwick, W. H.; Nguyen, V.; Willis, C. L.; Sherman, D. H. Gene 2002, 296, 235.
[8] Jeschke, P. ChemBioChem 2004, 5, 570.
[9] Ardá, A.; Soengas, R. G.; Nieto, M. I.; Jiménez, C.; Rodríguez, J. Org. Lett. 2008, 10, 2175.
[10] Nguyen, V.; Willis, C. L.; Gerwick, W. H. Chem. Commun. 2001, 1934.
[11] Ardá, A.; Rodríguez, J.; Nieto, R. M.; Bassarello, C.; Gomez-Paloma, L.; Bifulco, G.; Jiménez, C. Tetrahedron 2005, 61, 10093.
[12] Orjala, J.; Gerwick, W. H. J. Nat. Prod. 1996, 59, 427.
[13] Sadar, M. D.; Williams, D. E.; Mawji, N. R.; Patrick, B. O.; Wikanta, T.; Chasanah, E.; Irianto, H. E.; Soest, R. V.; Andersen, R. J. Org. Lett. 2008, 10, 4947.
[14] Durow, A. C.; Long, G. C.; O'Connell, S. J.; Willis, C. L. Org. Lett. 2006, 8, 5401.
[15] Su, J.; Zhong, Y.; Zeng, L.; Wei, S.; Wang, Q.; Mak, T. C. W.; Zhou, Z. J. Nat. Prod. 1993, 56, 637.
[16] Gu, Z.; Zakarian, A. Angew. Chem., Int. Ed. 2010, 49, 9702.
[17] Galonic, D. P.; Vaillancourt, F. H.; Walsh, C. T. J. Am. Chem. Soc. 2006, 128, 3900.
[18] Gu, Z.; Herrmann, A. T.; Zakarian, A. Angew. Chem., Int. Ed. 2011, 50, 7136.
[19] Beaumont, S.; llardi, E. A.; Monroe, L. R.; Zakarian, A. J. Am. Chem. Soc. 2010, 132, 1482.
[20] Lu, M.; Loh, T. Org. Lett. 2014, 16, 4698.
[21] Li, D.; Li, Y.; Chen, Z.; Shang, H.; Li, H.; Ren, X. RSC Adv. 2014, 4, 14254.
[22] Tian, Y.; Liu, Z. RSC Adv. 2014, 4, 64855.
[23] Liu, Y.; Zhang, J.; Song, R.; Li, J. Org. Chem. Front. 2014, 1, 1289.
[24] Pan, C.; Gao, D.; Yang, Z.; Wu, C.; Yu, J. Org. Biomol. Chem. 2018, 16, 5752.
[25] Song, J.; Chen, D.; Gong, L. Natl. Sci. Rev. 2017, 4, 381.
[26] Sravanthi, T. V.; Manju, S. L. Eur. J. Pharm. Sci. 2016, 91, 1.
[27] Megna, B. W.; Carney, P. R.; Nukaya, M.; Geiger, P.; Kennedy, G. D. J. Surg. Res. 2016, 204, 47.
[28] Singh, A. K.; Raj, V.; Saha, S. Eur. J. Med. Chem. 2017, 142, 244.
[29] Zheng, C.; You, S. Chem 2016, 1, 830.
[30] Zhuo, C.; Zheng, C.; You, S. Acc. Chem. Res. 2014, 47, 2558.
[31] Ding, Q.; Zhou, X.; Fan, R. Org. Biomol. Chem. 2014, 12, 4807.
[32] Liang, D.; Dong, Q.; Xu, P.; Dong, Y.; Li, W.; Ma, Y. J. Org. Chem. 2018, 83, 11978.
[33] Liang, D.; Ge, D.; Lv, Y.; Huang, W.; Wang, B.; Li, W. J. Org. Chem. 2018, 83, 4681.
[34] Li, Y.; Chang, Y.; Li, Y.; Cao, C.; Yang, J.; Wang, B.; Liang, D. Adv. Synth. Catal. 2018, 360, 2488.
/
〈 |
|
〉 |