Chinese Journal of Organic Chemistry >
Isolation and Characterization of a Trinuclear Rare-Earth Metal Complex Containing a Bicyclo[3.1.0]-P64- Ligand
Received date: 2019-02-18
Revised date: 2019-03-25
Online published: 2019-04-08
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21725201, 21890721, 21572005).
Direct synthesis of organophosphorus compounds from white phosphorus (P4) is of great significance because this process avoids the industry pollution synthetic methods and provides the possibilities for many novel phosphorus-containing compounds. A trinuclear rare-earth metal complex[{(η5-C5Me5)LuCl}3(THF)P6] [Li(THF)4] from lutetacyclopentadiene mediated P4 functionalization was isolated and characterized. This novel complex contains a bicyclo[3.1.0]-P64- ligand which is an unreported type. X-ray diffraction analysis shows that the bicyclo[3.1.0]-P64- ligand adopts a boat-like conformation. Three lutetium atoms coordinate to this ligand in η1, η3, η3 mode, respectively, and a novel[P6Lu3] cage has been formed. Density functional theory (DFT) calculations indicate that there are two three-center two-electron bonds.
Du Shanshan , Chai Zhengqi , Hu Jingyuan , Zhang Wen-Xiong , Xi Zhenfeng . Isolation and Characterization of a Trinuclear Rare-Earth Metal Complex Containing a Bicyclo[3.1.0]-P64- Ligand[J]. Chinese Journal of Organic Chemistry, 2019 , 39(8) : 2338 -2342 . DOI: 10.6023/cjoc201902016
[1] (a) Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Chem. Rev. 2010, 110, 4164.
(b) Caporali, M.; Gonsalvi, L.; Rossin, A.; Peruzzini, M. Chem. Rev. 2010, 110, 4178.
(c) Scheer, M.; Balázs, G.; Seitz, A. Chem. Rev. 2010, 110, 4236.
(d) Khan, S.; Sen, S. S.; Roesky, H. W. Chem. Commun. 2012, 48, 2169.
[2] (a) Martin, C. D.; Weinstein, C. M.; Moore, C. E.; Rheingold, A. L.; Bertrand, G. Chem. Commun. 2013, 49, 4486.
(b) Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Angew. Chem., Int. Ed. 2014, 53, 12836.
(c) Arrowsmith, M.; Hill, M. S.; Johnson, A. L.; Kociok-Köhn, G.; Mahon, M. F. Angew. Chem., Int. Ed. 2015, 54, 7882.
[3] (a) Piro, N. A.; Figueroa, J. S.; McKellar, J. T.; Cummins, C. C. Science 2006, 313, 1276.
(b) Camp, C.; Maron, L.; Bergman, R. G.; Arnold, J. J. Am. Chem. Soc. 2014, 136, 17652.
(c) Pinter, B.; Smith, K. T.; Kamitani, M.; Zolnhofer, E. M.; Tran, B. L.; Fortier, S.; Pink, M.; Wu, G.; Manor, B. C.; Meyer, K.; Baik, M.-H.; Mindiola, D. J. J. Am. Chem. Soc. 2015, 137, 15247.
[4] (a) Zarzycki, B.; Bickelhaupt, F. M.; Radius, U. Dalton Trans. 2013, 42, 7468.
(b) Yao, S.; Lindenmaier, N.; Xiong, Y.; Inoue, S.; Szilvási, T.; Adelhardt, M.; Sutter, J.; Meyer, K.; Driess, M. Angew. Chem., Int. Ed. 2015, 54, 1250.
(c) Spitzer, F.; Graßl, C.; Balázs, G.; Zolnhofer, E. M.; Meyer, K.; Scheer, M. Angew. Chem., Int. Ed. 2016, 55, 4340.
(d) Pelties, S.; Maier, T.; Herrmann, D.; de Bruin, B.; Rebreyend, C.; Gärtner, S.; Shenderovich, I. G.; Wolf, R. Chem. Eur. J. 2017, 23, 6094.
[5] Mathey, F. Angew. Chem., Int. Ed. 2003, 42, 1578.
[6] Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1985, 24, 351.
[7] Fleischmann, M.; Heindl, C.; Seidl, M.; Balázs, G.; Virovets, A. V.; Peresypkina, E. V.; Tsunoda, M.; Gabbaï, F. P.; Scheer, M. Angew. Chem., Int. Ed. 2012, 51, 9918.
[8] (a) Warren, D. S.; Gimarc, B. M. J. Am. Chem. Soc. 1992, 114, 5378.
(b) Hiberty, P. C.; Volatron, F. Heteroat. Chem. 2007, 18, 129.
[9] Scherer, O. J.; Swarowsky, H.; Wolmershäuser, G.; Kaim, W.; Kohlmann, S. Angew. Chem., Int. Ed. Engl. 1987, 26, 1153.
[10] Scherer, O. J.; Schwalb, J.; Swarowsky, H.; Wolmershäuser, G.; Kaim, W.; Gross, R. Chem. Ber. 1988, 121, 443.
[11] Scherer, O. J.; Vondung, J.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 1355.
[12] Scherer, O. J.; Werner, B.; Heckmann, G.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1991, 30, 553.
[13] Hulley, E. B.; Wolczanski, P. T.; Lobkovsky, E. B. Chem. Commun. 2009, 6412.
[14] Arleth, N.; Gamer, M. T.; Köppe, R.; Pushkarevsky, N. A.; Konchenko, S. A.; Fleischmann, M.; Bodensteiner, M.; Scheer, M.; Roesky, P. W. Chem. Sci. 2015, 6, 7179.
[15] Vaira, M. D.; Stoppioni, P. Polyhedron 1994, 13, 3045.
[16] Wisniewska, A.; Lapczuk-Krygier, A.; Baranowska, K.; Chojnacki, J.; Matern, E.; Pikies, J.; Grubba, R. Polyhedron 2013, 55, 45.
[17] (a) Konchenko, S. N.; Pushkarevsky, N. A.; Gamer, M. T.; Köppe, R.; Schnöckel, H.; Roesky, P. W. J. Am. Chem. Soc. 2009, 131, 5740.
(b) Huang, W.; Diaconescu, P. L. Chem. Commun. 2012, 48, 2216.
(c) Huang, W.; Diaconescu, P. L. Eur. J. Inorg. Chem. 2013, 4090.
(d) Selikhov, A. N.; Mahrova, T. V.; Cherkasov, A. V.; Fukin, G. K.; Kirillov, E.; Lamsfus, C. A.; Maron, L.; Trifonov, A. A. Organometallics 2016, 35, 2401.
(e) Schoo, C.; Bestgen, S.; Köppe, R.; Konchenko, S. N.; Roesky, P. W. Chem. Commun. 2018, 54, 4770.
[18] Ma, W.; Yu, C.; Chen, T.; Xu, L.; Zhang, W.-X.; Xi, Z. Chem. Soc. Rev. 2017, 46, 1160.
[19] (a) Xu, L.; Chi, Y.; Du, S.; Zhang, W.-X.; Xi, Z. Angew. Chem., Int. Ed. 2016, 55, 9187.
(b) Du, S.; Yin, J.; Chi, Y.; Xu, L.; Zhang, W.-X. Angew. Chem., Int. Ed. 2017, 56, 15886.
(c) Du, S.; Zhang, W.-X.; Xi, Z. Organometallics 2018, 37, 2018.
(d) Du, S.; Hu, J.; Chai, Z.; Zhang, W.-X.; Xi, Z. Chin. J. Chem. 2019, 37, 71.
[20] (a) Nief, F.; Mathey, F. J. Chem. Soc., Chem. Commun. 1989, 800.
(b) Fontaine, F.-G.; Tupper, K. A.; Tilley, T. D. J. Organomet. Chem. 2006, 691, 4595.
[21] (a) Jaroschik, F.; Shima, T.; Li, X.; Mori, K.; Ricard, L.; Le Goff, X.-F.; Nief, F.; Hou, Z. Organometallics 2007, 26, 5654.
(b) Xu, Y.; Wang, Z.; Gan, Z.; Xi, Q.; Duan, Z.; Mathey, F. Org. Lett. 2015, 17, 1732.
[22] (a) Zhang, L.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2007, 46, 1909.
(b) Masuda, J. D.; Jantunen, K. C.; Ozerov, O. V.; Noonan, K. J. T.; Gates, D. P.; Scott, B. L.; Kiplinger, J. L. J. Am. Chem. Soc. 2008, 130, 2408.
[23] (a) Turbervill, R. S. P.; Goicoechea, J. M. Chem. Rev. 2014, 114, 10807;
(b) Hennersdorf, F.; Frötschel, J.; Weigand, J. J. J. Am. Chem. Soc. 2017, 139, 14592.
[24] Baudler, M.; Aktalay, Y.; Tebbe, K. F.; Heinlein, T. Angew. Chem., Int. Ed. Engl. 1981, 20, 967.
[25] Jutzi, P.; Kroos, R.; Möller, A.; Bögger, H.; Penk, M. Chem. Ber. 1991, 124, 75.
[26] (a) Xu, L.; Wang, Y.-C.; Wei, J.; Wang, Y.; Wang, Z.; Zhang, W.-X.; Xi, Z. Chem. Eur. J. 2015, 21, 6686.
(b) Xu, L.; Wei, J.; Zhang, W.-X.; Xi, Z. Chem. Eur. J. 2015, 21, 15860.
(c) Xu, L.; Wang, Y.; Wang, Y.-C.; Wang, Z.; Zhang, W.-X.; Xi, Z. Organometallics 2016, 35, 5.
[27] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339.
[28] Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786.
/
〈 |
|
〉 |