Articles

A New Diarylethene Probe for Colorimetric Detection of CN- and Fluorescent Recognition of Zn2+/H2PO4-

  • Diao Lu ,
  • Wang Renjie ,
  • Wang Niansheng ,
  • Liu Gang ,
  • Pu Shouzhi
Expand
  • Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013

Received date: 2019-01-24

  Revised date: 2019-03-22

  Online published: 2019-04-09

Supported by

Project supported by the National Natural Science Foundation of China (No. 41867053), and the Natural Science Foundation of Jiangxi Province (No. 20171ACB20025), the "5511" Science and Technology Innovation Talent Project of Jiangxi Province (No. 20165BCB18015), and the Project of the Science Funds of Jiangxi Education Office (No. GJJ180614).

Abstract

A new diarylethene 1-(3,5-dimethylisoxazole-4-yl)-2-(2-methyl-5-[(3-aminonaphthol-2-yl)phenol-yl]-thiophene-3-yl)perfluorocyclopentene (1O) dual-response chemosensor has been synthesized, and its photochromic and fluorescent switch behaviors were systematically investigated by stimulation of lights and ions. The results indicated that 1O could serve as a CN-/F- "naked-eyes" colorimetric sensor with the color change from colorless to yellow, and act as a "Turn-on" fluorescence probe for specific detecting Zn2+. Moreover, the limits of detection of CN- and Zn2+ were determined to be 1.03×10-6 and 2.98×10-8 mol•L-1, respectively.

Cite this article

Diao Lu , Wang Renjie , Wang Niansheng , Liu Gang , Pu Shouzhi . A New Diarylethene Probe for Colorimetric Detection of CN- and Fluorescent Recognition of Zn2+/H2PO4-[J]. Chinese Journal of Organic Chemistry, 2019 , 39(7) : 1930 -1938 . DOI: 10.6023/cjoc201901038

References

[1] (a) Williams, R. J. P. The Biological Chemistry of the Elements, Clarendon, Oxford, 1991, p. 174.
(b) Bianchi, A.; Bowman-James, K.; García-España, E. Supramolecular Chemistry of Anions, Wiley-VCH, New York, 1997.
(c) Vazquez, M.; Fabrizzi, L.; Taglietti, A.; Pedrido, R. M.; Gonzalez-Noya, A. M.; Bermejo, M. R. Angew. Chem., Int. Ed. 2004, 43, 1962.
[2] (a) Silva, J.-J R. F. D.; Williams, R. J. P. The Biological Chemistry of the Elements:the Inorganic Chemistry of Life, Oxford University Press, Oxford, 2001, p. 315.
(b) Vallee, B. L.; Auld, D. S. Acc. Chem. Res. 1993, 26, 543.
(c) Bush, I.; Pettingell, W. H.; Multhaup, G.; Paradis, M. D.; Vonsattel, J. P.; Gusella, J. F.; Beyreuther, K.; Masters, C. L.; Tanzi, R. E. Science 1994, 265, 1464.
(d) Fraker, P. J.; King, L. E. Annu. Rev. Nutr. 2004, 24, 277.
(e) Cuajungco, M. P.; Lees, G. J. Neurobiol. Dis. 1997, 4, 137.
(f) Frassinetti, S.; Bronzetti, G. L.; Caltavuturo, L.; Cini, M. Della Croce, C. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 597.
[3] (a) Lai, J.; Moxey, A.; Nowak, G.; Vashum, K.; Bailey, K.; McEvoy, M. J. Affective Disord. 2012, 136, 31.
(b) Weiss, J. H.; Sensi, S. L.; Koh, J. Y. Trends Pharmacol. Sci. 2000, 21, 395.
(c) Maes, M.; Vos, N. D.; Demedts, P.; Wauters, A.; Neels, H. J. Affective Disord. 1999, 56, 189.
[4] Carol, P.; Sreejith, S.; Ajayaghosh, A. Chem. Asian. J. 2007, 2, 338.
[5] (a) Zhang, J. F.; Bhuniya, S. Y.; Lee, H.; Bae, C.; Lee, J. H.; Kim, J. S. Tetrahedron Lett. 2010, 51, 3719.
(b) Voegelin, A.; Pfister, S.; Scheinost, A. C.; Marcus, M. A.; Kretzschmar, R. Environ. Sci. Technol. 2005, 39, 6616.
(c) Callender, E.; Rice, K. C. Environ. Sci. Technol. 2000, 34, 232.
(d) Li, L.; Dang, Y. Q.; Li, H. W.; Wang, B.; Wu, Y. Tetrahedron Lett. 2010, 51, 618.
[6] (a) Tang, L.; Zhou, P.; Zhong, K.; Hou, S. Sens. Actuators, B:2013, 182, 439.
(b) Kumari, N.; Jha, S.; Bhattacharya, S. J. Org. Chem. 2011, 76, 8215.
(c) Zhang, W.; Xu, K.; Yue, L.; Shao, Z.; Feng, Y.; Fang, M. Dyes Pigm. 2017, 137, 560.
(d) Shan, Y.; Wu, Q.; Sun, N.; Sun, Y.; Cao, D.; Liu, Z. Macromol. Chem. Phys. 2017, 186, 295.
(e) Liu, T.; Huo, F.; Li, J.; Cheng, F.; Ying, C. Sens. Actuators, B 2017, 239, 526.
[7] (a) Hachiya, H.; Ito, S.; Fushinuki, Y.; Masadome, T.; Asano, Y.; Imato, T. Talanta 1999, 48, 997.
(b) Wang, L. Y.; Li, L. Q.; Cao, D. R. Sens. Actuator, B 2017, 239, 1307.
(c) Kalpana, P.; Suganya, S.; Velmathi, S. Spectrochim. Acta, A 2017, 171, 162.
(d) Li, H.; Zhao, P.; Zou, N.; Wang, H.; Sun, K. Tetrahedron Lett. 2017, 58, 30.
[8] Saenger, W. Principles of Nucleic Acid Structure, Springer, New York, 1988.
[9] (a) Paredes, J. M.; Giron, M. D.; Ruedas-Rama, M. J.; Orte, A.; Crovetto, L.; Talavera, E. M.; Salto, R.; Alvarez-Pez, J. M. J. Phys. Chem. B 2013, 117, 8143.
(b) Bhaumik, C.; Das, S.; Maity, D.; Baitalik, S. Dalton Trans. 2011, 40, 11795.
[10] (a) Irie, M. Chem. Rev. 2000, 100, 1685.
(b) Tian, H.; Yang, S. Chem. Soc. Rev. 2004, 35, 85.
(c) Irie, M.; Fukaminato, T.; Sasaki, T. Nature 2002, 420, 759.
(d) Fu, Y. L.; Fan, C. B.; Liu, G.; Pu, S. Z. Sens. Actuators, B 2017, 239, 295.
(e) Zhang, X.-X.; Wang, R. J.; Fan, C. B.; Liu, G.; Pu, S. Z. Dyes Pigm. 2017, 139, 208.
[11] (a) Wang, R. J.; Wang, N. S.; Pu, S. Z.; Zhang, X.-X.; Liu, G.; Dai, Y. F. Dyes Pigm. 2017, 146, 445.
(b) Wang, R. J.; Wang, N. S.; Tu, Y.-Y.; Liu, G.; Pu, S. Z. J. Photochem. Photobiol. A 2018, 364, 32.
(c) Wang, R. J.; Diao, L.; Ren, Q. W.; Liu, G.; Pu, S. Z. ACS Omega 2019, 4, 309.
[12] Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Chem. Rev. 2014, 114, 12174.
[13] Wu, J. S.; Liu, W. M.; Zhuang, X. Q. Org. Lett. 2007, 9, 33.
[14] Wang, H.; Wang, B.; Shi, Z. Biosens. Bioelectron. 2015, 65, 91.
[15] (a) Dong, W. K.; Li, X. L.; Wang, L.; Zhang, Y.; Ding, Y. J. Sens. Actuators, B 2016, 229, 370.
(b) Feng, E. T.; Tu, Y.-Y.; Fan, C. B.; Liu, G.; Pu, S. Z. RSC Adv. 2017, 7, 50188.
[16] Yao, K.; Fu, J. X.; Chang, Y. X.; Li, B.; Yang, L.; Xu, K. X. Spectrochim. Acta, Part A 2018, 205, 410.
[17] Sabyasachi, T.; Sudipta, D.; Milan, G.; Mahuya, B.; Kumar, H. S.; Pratim, M. P.; Debasis, D. Spectrochim. Acta, Part A 2019, 209, 170.
[18] Purkait, R.; Chattopadhyay, D. A.; Sinha, C. Spectrochim. Acta, Part A 2019, 207, 164.
[19] Karar, M.; Paul, S.; Biswas, B. Dalton. Trans. 2018, 276, 560.
[20] Cui, S. Q.; Pu, S. Z.; Liu, G. Spectrochim. Acta, Part A 2014, 132, 339.

Outlines

/