ARTICLE

Synthesis of Quinazolinone Derivatives Catalyzed by Alkaline Protease

  • Xie Zongbo ,
  • Li Hongxia ,
  • Liu Liansheng ,
  • Lan Jin ,
  • Hu Zhiyu ,
  • Le Zhanggao
Expand
  • Department of Applied Chemistry, East China University of Technology, Nanchang 330013

Received date: 2019-01-24

  Revised date: 2019-03-27

  Online published: 2019-04-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21462001, 21465002, 21262002), the Science and Technology Projects of Jiangxi (No. 20161BCB24006), and the Science and Technology Foundation of the Jiangxi Education Department (Nos. KJLD14050, GJJ150584).

Abstract

Alkaline protease-catalyzed synthesis of quinazolinone derivatives was developed between β-keotester and o-aminobenzamide. Because ethanol is one kind of eco-friendly solvents, this method can reduce the impact of solvents on the environment. Alkaline protease as a biocatalyst has many advantages, e.g. high catalytic activity, environmentally friendly, wide variety of sources and simple operation. In addition, a variety of quinazolinone derivatives was obtained with good to excellent yields just using 2000 U alkaline protease as catalyst.

Cite this article

Xie Zongbo , Li Hongxia , Liu Liansheng , Lan Jin , Hu Zhiyu , Le Zhanggao . Synthesis of Quinazolinone Derivatives Catalyzed by Alkaline Protease[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2632 -2638 . DOI: 10.6023/cjoc201901037

References

[1] Yan, B.-R.; Lv, X.-Y.; Du, H.; Bao, X.-P. Chin. J. Org. Chem. 2016, 36, 207(in Chinese). (闫柏任, 吕新阳, 杜欢, 鲍小平, 有机化学, 2016, 36, 207.)
[2] Abdolmohammadi, S.; Karimpour, S. Chin. Chem. Lett. 2016, 27, 114.
[3] Ghosh, S. K.; Nagarajan, R. RSC Adv. 2016, 6, 27378.
[4] Shiri, L.; Narimani, H.; Kazemi, M. Appl. Organomet. Chem. 2018, 32, e3999.
[5] Ghorbani-Choghamarani, A.; Darvishnejad, Z.; Norouzi, M. Appl. Organomet. Chem. 2015, 29, 707.
[6] Norouzi, M.; Ghorbani-Choghamarani, A.; Nikoorazm, M. RSC Adv. 2016, 6, 92387.
[7] Abdollahi-Alibeik, M.; Shabani, E. Chin. Chem. Lett. 2011, 22, 1163.
[8] Khan Abdul, A.; Mitra, K.; Mandal, A.; Baildya, N.; Mondal Mohabul, A. Heteroat. Chem. 2017, 28, e21379.
[9] Das Gupta, A.; Samanta, S.; Mallik, A. K. Org. Prep. Proced. Int. 2015, 47, 356.
[10] Shiri, L.; Ghorbani-Choghamarani, A.; Kazemi, M. Appl. Organomet. Chem. 2016, 31, e3596.
[11] Nikoorazm, M.; Ghorbani-Choghamarani, A.; Khanmoradi, M. RSC Adv. 2016, 6, 56549.
[12] Katla, R.; Chowrasia, R.; da Silva, C. D. G.; de Oliveira, A. R.; dos Santos, B. F.; Domingues, N. L. C. Synthesis 2017, 49, 5143.
[13] Rajaka, L.; Penumati, N. R.; Nagaiah, K.; Poornachandra, Y.; Kumar, C. G. Synth. Commun. 2015, 45, 1893.
[14] Mikls, F.; Hum, V.; Fülöp, F. ARKIVOC 2014, 6, 25.
[15] Tamaddon, F.; KazemiVarnamkhasti, M. Carbohydr. Res. 2017, 437, 9.
[16] Borase, P. N.; Thale, P. B.; Shankarling, G. S. RSC Adv. 2016, 6, 63078.
[17] Tamaddon, F.; Pouramini, F. Synlett 2014, 25, 1127.
[18] Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Green Chem. 2013, 15, 2713.
[19] Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Biomol. Chem. 2012, 10, 240.
[20] Gao, L.; Ji, H.; Rong, L.; Tang, D.; Zha, Y.; Shi, Y.; Tu, S. J. Heterocycl. Chem. 2011, 48, 957.
[21] Cerqueira Pereira, S.; Bussamara, R.; Marin, G.; Lima Camargo Giordano, R.; Dupont, J.; de Campos Giordano, R. Green Chem. 2012, 14, 3146.
[22] Kloosterman, W. M. J.; Roest, S.; Priatna, S. R.; Stavila, E.; Loos, K. Green Chem. 2014, 16, 1837.
[23] Paggiola, G.; Hunt, A. J.; McElroy, C. R.; Sherwood, J.; Clark, J. H. Green Chem. 2014, 16, 2107.
[24] Yang, M.; Luo, M.; Xian, X. J. Chongqing Univ. (Engl. Ed.) 2011, 10, 23.
[25] O'Brien, P. J.; Herschlag, D. Chem. Biol. 1999, 6, R91-R105.
[26] Acharya, C.; Mandal, M.; Dutta, T.; Ghosh, A. K.; Jaisankar, P. Tetrahedron Lett. 2016, 57, 4382.
[27] Li, R.; Li, Z.-L.; Zhou, H.-Y.; He, Y.-H.; Guan, Z. J. Mol. Catal. B:Enzym. 2016, 126, 90.
[28] Cai, J.-F.; Guan, Z.; He, Y.-H. J. Mol. Catal. B:Enzym. 2011, 68, 240.
[29] Zandvoort, E.; Geertsema Edzard, M.; Baas, B. J.; Quax Wim, J.; Poelarends Gerrit, J. Angew. Chem. 2012, 124, 1266.
[30] Zhang, M.-J.; Li, R.; He, Y.-H.; Guan, Z. Catal. Commun. 2017, 98, 85.
[31] Ding, X.; Zhang, X.-D.; Dong, C.-L.; Guan, Z.; He, Y.-H. Catal. Lett. 2018, 148, 757.
[32] He, T.; Li, K.; Wu, M.-Y.; Feng, X.-W.; Wang, N.; Wang, H.-Y.; Li, C.; Yu, X.-Q. J. Mol. Catal. B:Enzym. 2010, 67, 189.
[33] Guan, Z.; Song, J.; Xue, Y.; Yang, D.-C.; He, Y.-H. J. Mol. Catal. B:Enzym. 2015, 111, 16.
[34] Tian, X.; Zheng, L. 2015 China Enzyme Engineering and Sugar Bioengineering Symposium Abstract Collection 2015.
[35] Acharya, C.; Achari, A.; Jaisankar, P. Tetrahedron Lett. 2018, 59, 663.
[36] Sun, D.-Z.; Jiang, G.-F.; Xie, Z.-B.; Le, Z.-G. Chin. J. Chem. 2015, 33, 409.
[37] Le, Z.-G.; Liang, M.; Chen, Z.-S.; Zhang, S.-H.; Xie, Z.-B. Molecules 2017, 22, 762.
[38] Xie, Z.-B.; Zhang, S.-G.; Jiang, G.-F.; Liang, M.; Le, Z.-G. Chin. J. Org. Chem. 2017, 37, 514(in Chinese). (谢宗波, 张士国, 姜国芳, 梁萌, 乐长高, 有机化学, 2017, 37, 514.)
[39] Yang, N.; Nan, J.; Broströmer, E.; Hatti-Kaul, R.; Su, X. Proteins 2010, 73, 1072.
[40] Liu, L.-S.; Xie, Z.-B.; Zhang, C.; Fu, L.-H.; Zhu, H.-B.; Le, Z.-G. Green Chem. Lett. Rev. 2018, 11, 503.
[41] Li, Z.-W.; Dong, J.-Y.; Chen, X.-L.; Li, Q.; Zhou, Y.-B.; Yin, S.-F. J. Org. Chem. 2015, 80, 9392.

Outlines

/