Chinese Journal of Organic Chemistry >
Design, Synthesis and Antioxidant Application of Camphorsulfonic Acid Thiazolylhydrazone Derivatives
Received date: 2019-01-30
Revised date: 2019-03-17
Online published: 2019-04-11
Supported by
Project supported by the National Natural Science Foundation of China (No. 31470592).
A series of camphorsulfonic acid thiazolylhydrazone derivatives were synthesized by using camphorsulfonic acid derivated from natural camphor as the starting material in three steps, including condensation with aminothiourea and cyclization with bromoacetophenone. Their structures were characterized by 1H NMR, 13C NMR and HR-MS, and their antioxidant activities were also investigated. The results showed that these compounds had good antioxidant activities compared with the positive control trolox. Among of them, (2-(2-(4-(4-cyanophenyl)thiazol-2-yl)indenyl)-7,7-dimethylbicyclo-[2.2.1]hept-1-yl)methanesulfonic acid (Q19) exhibited the relatively strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity with IC50 value of 176 μmol/L, (2-(2-(4-(4-fluorophenyl)thiazol-2-yl)hydrazino)-7,7-dimethylbicyclo-[2.2.1]hept-1-yl)methanesulfonic acid (Q3) exhibited the relatively strong diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activity with IC50 value of 20.6 μmol/L, (E)-(7,7-dimethyl-2-(2-(4-(3-methyl)-thiazol-2-yl)indenyl)bicyclo[2.2.1]hept-1-yl)-sulfonic acid (Q8) exhibited the strong hydroxyl radical scavenging activity with scavenge rate 66.2%, (2-(2-(4-(4-biphenyl)thiazol-2-yl)indenyl)-7,7-dimethylbicyclo[2.2.1]hept-1-yl)methane-sulfonic acid (Q20) exhibited the relatively strong superoxide radical scavenging activity with IC50 value of 20.7 μmol/L. Compared with the positive control kojic acid, (2-(2-(4-(2-hydroxyphenyl)thiazol-2-yl)arylene)-7,7-dimethylbicyclo[2.2.1]hept-1-yl)methanesulfonic acid (Q16) exhibited remarkable tyrosinase inhibitory activity with IC50 value of 154.9 μmol/L. It was known from the structure-activity relationship that the structure of R gave great influence on the activities of thiazolylhydrazone derivatives.
Key words: camphorsulfonic acid; thiazolylhydrazone; antioxidant activity
Zhang Qiangjian , Wang Yunyun , Zhao Yuxun , Ma Chonghui , Xu Xu , Gu Wen , Yang Yiqing , Wang Shifa . Design, Synthesis and Antioxidant Application of Camphorsulfonic Acid Thiazolylhydrazone Derivatives[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2616 -2624 . DOI: 10.6023/cjoc201901053
[1] Limtrakul, P.; Yodkeeree, S.; Thippraphan, P. BMC Com-plementary Altern. Med. 2016, 16, 497.
[2] Gragnani, A.; Cornick, S.; Chominski, V. Adv. Aging Res. 2014, 3, 265.
[3] Pedrosa, T.; Barros, A.; Nogueira, J. Arch. Dermatol. Res. 2016, 308, 643.
[4] Delalle-Lozica, N. Acta Clin. Croat. 2010, 49, 529.
[5] Jae, Y. L.; Young-Rak, C.; Ju, H. P. Toxicol. Rep. 2019, 6, 10.
[6] Limtrakul, P.; Yodkeeree, S.; Thippraphan, P. BMC Com-plementary Altern. Med. 2016, 16, 497.
[7] Alfredo, G.; Sarita, M. C.; Verônica, C. Adv. Aging Res. 2014, 3, 265.
[8] Laguerre, M.; Lecomte, J.; Villeneuve, P. Prog. Lipid Res. 2007, 46, 244.
[9] Amorati, R.; Foti, M.; Valgimigli, L. J. Agric. Food Chem. 2013, 61, 10835.
[10] Liu, Y.; Huang, G.; Hu, J. Int. J. Biol. Macromol. 2018, 111, 1304.
[11] Didem, ?.; Suat, S.; Burak, B. Bioorg. Chem. 2018, 81, 168.
[12] Li, X.; Huang, J.; Wang, Z. Sep. Purif. Technol. 2014, 124, 201.
[13] Adelakun, O.; Kudanga, T.; Parker, A. J. Mol. Catal. B:Enzym. 2012, 74, 29.
[14] Adom, K.; Liu, R. J. Agric. Food Chem. 2005, 53, 6572.
[15] Erzsébet, I.; Amir, M.; Vered, M. Free Radical Biol. Med. 2019, 131, 1.
[16] Jae, Y.; Young, R.; Ju, H. Toxicol. Rep. 2019, 6, 10.
[17] Olanow, C. Trends Neurosci. 1993, 16, 439.
[18] Bennett, S.; Grant, M.; Aldreda, S. J. Alzheimer's Dis. 2009, 17, 245.
[19] Rietveld, I.; Barrio, M.; Veglio, N. Thermochim. Acta 2010, 511, 43.
[20] Andersson, O.; Ross, R.; Jezowski, A. Mol. Phys. 1990, 70, 1065.
[21] Kisiel, Z.; Desyatnyk, O.; Bia?kowska-Jaworska, E. Phys. Chem. Chem. Phys. 2003, 5, 820.
[22] Hargrave, K.; Hess, F.; Oliver, J. J. Med. Chem. 1983, 26, 1158.
[23] Patt, W.; Hamilton, H.; Taylor, M. J. Med. Chem. 1992, 35, 2562.
[24] Kamble, R.; Meshram, R.; Hese, S. Comput. Biol. Chem. 2016, 61, 86.
[25] Jaen, J.; Wise, L.; Caprathe, B. J. Med. Chem. 1990, 33, 311.
[26] Mohammad, H.; Reddy, P.; Monteleone, D. Eur. J. Med. Chem. 2015, 94, 306.
[27] Ergenç, N.; Çapan, G.; Günay, N. Arch. Pharm. (Weinheim, Ger.) 1999, 332, 343.
[28] Bell, F.; Cantrell, A.; Hoegberg, M. J. Med. Chem. 1995, 38, 4929.
[29] Badorc, A.; Bordes, M.; Cointet, P. Med. Chem. 1997, 40, 3393.
[30] Khan, K.; Qurban, S.; Salar, U. Bioorg. Chem. 2016, 68, 245.
[31] Wang, G.; Peng, Z.; Gong, Z. Bioorg. Chem. 2018, 78, 195.
[32] Paudel, Y. N.; Ali, M. R.; Shah, S. Biomed. Pharmacother. 2017, 89, 651.
[33] Rui, J.; Zhang, Q.; Wang, X. Chin. J. Org. Chem. 2017, 37, 218(in Chinese). (芮坚, 张齐, 王欣, 有机化学, 2017, 37, 218.)
[34] Sun, N.; Wang, X.; Ding, Z. Chin. J. Org. Chem. 2016, 36, 2489. (in Chinese). (孙楠, 王欣, 丁志彬, 有机化学, 2016, 36, 2489.)
[35] Wang, Y.; Gu, W.; Shan, Y. Bioorg. Med. Chem. Lett. 2017, 27, 2360.
[36] Yang, J.; Xu, X.; Rui, J. Spectrochim. Acta, Part A 2017, 183, 60.
[37] Yang, J.; Xu, H.; Xu, X. Dyes Pigm. 2016, 128, 75.
[38] Vinícius, G. M.; Marina, F. R.; Thales, K. J. Mol. Graphics Modell. 2019, 86, 106.
/
〈 |
|
〉 |