ARTICLE

Studies on the Total Synthesis of iso-L-Guanosine

  • Tang Jie ,
  • Dong Xiangyou ,
  • Ouyang Wenliang ,
  • Zhu Yunlong ,
  • Ding Haixin ,
  • Xiao Qiang
Expand
  • Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013

Received date: 2019-01-27

  Revised date: 2019-03-18

  Online published: 2019-04-16

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21462019, 21676131), the Bureau of Science & Technology of Jiangxi Province (No. 20143ACB20012) and the Jiangxi Science & Technology Normal University (Doctor Startup Fund No. 2018BSQD022).

Abstract

An improved route for the total synthesis of iso-L-guanosine was developed. Using L-ribose as the starting material, 3,5-O-dibenzyl-1-deoxy-L-ribose was firstly synthesized. Then, Mitsunobu reaction between N2,N2-bis(tert-butyloxycarbonyl)-6-chloro-guanine and 3,5-O-dibenzyl-1-deoxy-L-ribose afforded isonucleoside 6. Finally, iso-L-guanosine was synthesized in 9 steps with 37.3% overall yield. Adopting Mitsunobu reaction as the key step, it has the merits of high steroseletivity and regioselectivity, mild reaction condition, and high yield. Currently developed approach could be used as a general synthetic strategy for the synthesis other related guanine isonucleosides.

Cite this article

Tang Jie , Dong Xiangyou , Ouyang Wenliang , Zhu Yunlong , Ding Haixin , Xiao Qiang . Studies on the Total Synthesis of iso-L-Guanosine[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2609 -2615 . DOI: 10.6023/cjoc201901045

References

[1] (a) Yates, M. K.; Seley-Radtke, K. L. Antiviral Res. 2019, 162, 5.
(b) Seley-Radtke, K. L.; Yates, M. K. Antiviral Res. 2018, 154, 66.
(c) Jordheim, L. P.; Durantel, D.; Zoulim, F.; Dumontet, C. Nat. Rev. Drug Discovery 2013, 12, 447.
(d) Zhou, X.-X.; Littler, E. Curr. Top. Med. Chem. 2006, 6, 851.
(e) Fan, X.-S.; Zhang, X.-Y.; Wang, X.; Qu, G.-R. Chin. J. Org. Chem. 2008, 28, 1888(in Chinese). (范学森, 张新迎, 王霞, 渠桂荣, 有机化学, 2008, 28, 1888.)
[2] (a) Montgomery, J. A.; Clayton, S. D.; Thomas, H. J. J. Org. Chem. 1975, 40, 1923.
(b) Montgomery, J. A.; Thomas, H. J. J. Org. Chem. 1978, 43, 541.
[3] (a) Nair, V.; Jahnke, T. S. Antimicrob. Agents Chemother. 1995, 39, 1017.
(b) Nair, V.; Piotrowska, D. G.; Okello, M.; Vadakkan, J. Nucleosides Nucleotides Nucleic Acids 2007, 26, 687.
(c) Chun, B. K.; Vadakkan, J. J.; Nair, V. Nucleosides Nucleotides Nucleic Acids 2005, 24, 725.
[4] (a) Ogino, T.; Sato, K.; Matsuda, A. ChemBioChem 2010, 11, 2597.
(b) Kira, T.; Kakefuda, A.; Shuto, S.; Matsuda, A.; Baba, M.; Shigeta, S. Nucleosides Nucleotides Nucleic Acids 1995, 14, 571.
(c)Yoshimura, Y.; Asami, K.; Matsui, H.; Tanaka, H.; Takahata, H. Org. Lett. 2006, 8, 6015.
[5] (a) Yu, H. W.; Zhang, H. Y.; Yang, Z. J.; Min, J. M.; Ma, L. T.; Zhang, L. H. Pure App. Chem. 1998, 70, 435.
(b) Tian, X. B.; Min, J. M.; Zhang, L. H. Tetrahedron:Asymmetry 2000, 11, 1877.
(c) Yu, H. W.; Zhang, L. R.; Zhou, J. C.; Ma, L. T.; Zhang, L. H. Bioorg. Med. Chem. 1996, 4, 609.
[6] (a) Song, Y.; Yang, R.; Ding, H.; Sun, Q.; Xiao, Q.; Ju, Y. Synthesis-Stuttgart 2011, 1213.
(b) Sun, Z. D.; Zhu, Y. L.; Huang, H. Y.; Song, X. R.; Xiao, Q. Chin. J. Org. Chem. 2016, 36, 2729(in Chinsese). (孙志东, 朱云龙, 黄海洋, 宋贤荣, 肖强, 有机化学, 2016, 36, 2729.)
[7] Huang, Y.; Chen, Z.; Chen, Y.; Zhang, H.; Zhang, Y.; Zhao, Y.; Yang, Z.; Zhang, L. Bioconjugate Chem. 2013, 24, 951.
[8] Cai, B.; Yang, X.; Sun, L.; Fan, X.; Li, L.; Jin, H.; Wu, Y.; Guan, Z.; Zhang, L.; Zhang, L.; Yang, Z. Org. Biomol. Chem. 2014, 12, 8866.
[9] Fan, X.; Sun, L.; Li, K.; Yang, X.; Cai, B.; Zhang, Y.; Zhu, Y.; Ma, Y.; Guan, Z.; Wu, Y.; Zhang, L.; Yang, Z. Mol. Ther.-Nucleic Acids 2017, 9, 218.
[10] Li, L.; Yang, X.; Li, K.; Zhang, G.; Ma, Y.; Cai, B.; Li, S.; Ding, H.; Deng, J.; Nan, X.; Sun, J.; Wu, Y.; Shao, N.; Zhang, L.; Yang, Z. Org. Biomol. Chem. 2018, 16, 7488.
[11] (a) Zhang, S.; Cao, M.; Guan, Z.; Wang, Z.; Cao, Y. L.; Guo, Y.; Yang, Z. J.; Zhang, L. H. Chin. J. Med. Chem. 2011, 2, 4.
(b) Zhang, S. M.S. Thesis, Peking University, Beijing, 2011(in Chinese). (张烁, 硕士论文, 北京大学, 北京, 2011.)
(c) Zhang, H. Y.; Wu, X. J.; Yu, H. W.; Ma, L. T.; Zhang, L. H. Chin. Chem. Lett. 1996, 7, 1089.
(d) Zhang, H. Y.; Zhang, M. L.; Piao, Z. S.; Ma, L. T.; Zhang, L. H. Acta Pharm. Sin. 1999, 34, 363(in Chinese). (张虎翼, 张铭龙, 朴志松, 马灵台, 张礼和, 药学学报, 1999, 34, 363.)
[12] (a) Zhang, P. S.; Dong, E Z. M.; Cleary, T. P. Org. Process Res. Dev. 2005, 9, 583.
(b) Forsman, J. J.; Waerna, J.; Murzin, D. Y.; Leino, R. Eur. J. Org. Chem. 2009, 5666.
[13] CCDC 1892867(Compound 8) contain the supplementary crystallographic data for this paper.
[14] Houston, T. A.; Koreeda, M. Carbohydr. Res. 2009, 344, 2240.
[15] Kakefuda, A.; Shuto, S.; Nagahata, T.; Seki, J.; Sasaki, T.; Matsuda, A. Tetrahedron 1994, 50, 10167.
[16] Ohrui, H.; Waga, T.; Meguro, H. Biosci. Biotechnol. Biochem. 1993, 57, 1040.
[17] (a) Yoshimura, Y. Heterocycles 2017, 94, 1625.
(b) Kitkowska, J. D.; Tabaczynska, Z. A.; Draminski, M. Wiad. Chem. 2013, 67, 843.
(c) Leclerc, E. In Chemical Synthesis of Carbocyclic Analogues of Nucleosides, John Wiley & Sons, Inc., New York, 2013, pp. 535~604.
[18] (a) Jacobsen, M. F.; Knudsen, M. M.; Gothelf, K. V. J. Org. Chem. 2006, 71, 9183.
(b) Mercurio, M. E.; Tomassi, S.; Gaglione, M.; Russo, R.; Chambery, A.; Lama, S.; Stiuso, P.; Cosconati, S.; Novellino, E.; Di Maro, S.; Messere, A. J. Org. Chem. 2016, 81, 11612.
(c) Zhou, J.; Du, X.; Chen, X.; Xu, B. Biochemistry 2018, 57, 4867.
(d) Porcheddu, A.; Giacomelli, G.; Piredda, I.; Carta, M.; Nieddu, G. Eur. J. Org. Chem. 2008, (34), 5786.
[19] (a) Tzeng, C.-C.; Hwang, L.-C.; Chen, C.-C.; Wei, D.-C. Nucleoside Nucleotides 1995, 14, 1425.
[20] Meade, E. A.; Wotring, L. L.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1997, 40, 794.
[21] Lenagh-Snow, G. M. J.; Araujo, N.; Jenkinson, S. F.; Rutherford, C.; Nakagawa, S.; Kato, A.; Yu, C.-Y.; Weymouth-Wilson, A. C.; Fleet, G. W. J. Org. Lett. 2011, 13, 5834.

Outlines

/