Reviews

Recent Progress on Reactions of Arylmethyl Azides with Alkenes

  • Li Xiuying ,
  • Li Yajun ,
  • Wei Xiansheng ,
  • Luo Jinrong ,
  • Huang Guobao ,
  • Tan Minxiong
Expand
  • a Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000;
    b College of Medicine & Technology, Hunan Polytechnic of Environment and Biology, Hengyang 421005

Received date: 2019-03-01

  Revised date: 2019-03-30

  Online published: 2019-04-16

Supported by

Project supported by the National Natural Science Foundation of China (No. 21761033), the Natural Science Foundation of Guangxi (Nos. 2017GXNSFBA198211, 2018GXNSFAA294064), and the Yulin Normal University Research (Nos. 2018YJKY36, 201810606010).

Abstract

Arylmethyl azides (ArCH2N3) as one of the significant nitrogen sources with stable properties, simple synthesis, have been widely used in a wide range of organic synthesis reactions. The recent progress (2014~2018) on reactions of arylmethyl azides with alkenes is summarized. In addition, the organic reactions of arylmethyl azides with types of alkenes are described respectively, with their scope of substrates and reaction mechanism. It is hoped that this review can be referred to the future application in organic synthesis of arylmethyl azides with alkenes.

Cite this article

Li Xiuying , Li Yajun , Wei Xiansheng , Luo Jinrong , Huang Guobao , Tan Minxiong . Recent Progress on Reactions of Arylmethyl Azides with Alkenes[J]. Chinese Journal of Organic Chemistry, 2019 , 39(7) : 1831 -1836 . DOI: 10.6023/cjoc201903001

References

[1] Grecianl, S.; Aubé, J. Organic Azides:Syntheses and Applications, Vol. 7, Eds.:Bräse, S.; Banert, K., John Wiley & Sons, Ltd, Chichester, UK, 2010, pp. 191~310.
[2] (a) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
(b) Lee, J. H.; Gupta, S.; Jeong, W.; Rhee, Y. H.; Park, J. Angew. Chem., Int. Ed. 2012, 51, 10851.
(c) Han, J.; Jeon, M.; Pak, H. K.; Rhee, Y. H.; Park, J. Adv. Synth. Catal. 2014, 356, 2769.
(d) Gupta, S.; Han, J.; Kim, Y.; Lee, S. W.; Rhee, Y. H.; Park. J. J. Org. Chem. 2014, 79, 9094.
(e) Chou, H.-H.; Raines, R. T. J. Am. Chem. Soc. 2013, 135, 14936.
(f) Zhang, X.-X.; Sun, X.-P.; Zhang, H.-F.; Cui, X.-L.; Ma, M.-T. Chin. J. Org. Chem. 2015, 35, 1469(in Chinese). (张小祥, 孙小萍, 张海飞, 崔杏丽, 马猛涛, 有机化学, 2015, 35, 1469.)
(g) Zhang, W.-S.; Xu, W.-J.; Kuang, C.-X. Chin. J. Org. Chem. 2015, 35, 2059(in Chinese). (张文生, 许文静, 匡春香, 有机化学, 2015, 35, 2059.)
[3] (a) Song, Z.-Q.; Zhao, Y.-M.; Zhai, H.-B. Org. Lett. 2011, 13, 6331.
(b) Lamani, M.; Devadig, P.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 2753.
(c) Tummatorn, J.; Thongsornkleeb, C.; Ruchirawat, S.; Gettongsong, T. Org. Biomol. Chem. 2013, 11, 1463.
[4] Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040.
[5] Li, J.-L.; Wang, Y.-C.; Li, W.-Z.; Wang, H.-S.; Mo, D.-L.; Pan, Y.-M. Chem. Commun. 2015, 51, 17772.
[6] Tummatorn, J.; Poonsilp, P.; Nimnual, P.; Janprasit, J.; Thongsornkleeb, C.; Ruchirawat, S. J. Org. Chem. 2015, 80, 4516.
[7] Wang, Y.-C.; Li, J.-L.; He, Y.; Xie, Y.-Y.; Wang, H.-S.; Pan, Y.-M. Adv. Synth. Catal. 2015, 357, 3229.
[8] Wang, Y.-C.; Xie, Y.-Y.; Qu, H.-E.; Wang, H.-S.; Pan, Y.-M.; Huang, F. -P. J. Org. Chem. 2014, 79, 4463.
[9] Zefirov, N. S.; Chapovskaya, N. K.; Kolesnikov, V. V. Chem. Commun. 1971, 1001.
[10] Piet, J. C.; Le H. G.; Cailleux, P.; Benhaoua, H.; Carrie, R. Bull. Soc. Chim. Belg. 1996, 105, 33.
[11] Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Zunino, E.; Vaccaro, L. J. Org. Chem. 2005, 70, 6526.
[12] Wang, Y.-C.; Xie, Y.-Y.; Tan, X.-C.; Wang, H.-S.; Pan, Y.-M. Org. Biomol. Chem. 2015, 13, 513.
[13] Donald, A. S. R.; Marks, R. E. J. Chem. Soc. C 1967, 1188.
[14] Casey, M.; Donnelly, J. A.; Ryan, J. C.; Ushioda, S. ARKIVOC 2003, 7, 310.
[15] (a) Reddy, D. S.; Judd, W. R.; Aubé, J. Org. Lett. 2003, 5, 3899.
(b) Silvio, C.; Amenson, T. G. Tetrahedron Lett. 2012, 53, 6710.
[16] Mahoney, J. M.; Smith, C. R.; Johnston, J. N. J. Am. Chem. Soc. 2005, 127, 1354.
[17] Jumreang, T.; Charnsak, T.; Somsak, R.; Tanita, G. Org. Biomol. Chem. 2013, 11, 1463.
[18] Xie, Y.-Y.; Wang,Y.-C.; Qu, H.-E.; Tan, X.-C.; Wang, H.-S.; Pan, Y.-M. Adv. Synth. Catal. 2014, 356, 3347.
[19] Gangaprasad, D.; Paul Raj, J.; Kiranmye, T.; Sagubar Sadik, S.; Elangovan, J. RSC Adv. 2015, 5, 63473.
[20] Yang, W.-C.; Miao, T.; Li, P.-H.; Wang, L. RSC Adv. 2015, 5, 95833.
[21] Gangaprasad, D.; Paul Raj, J.; Kiranmye, T.; Karthikeyan, K.; Elangovan, J. Eur. J. Org. Chem. 2016, 5642.
[22] Xie, Y.-Y.; Wang, Y.-C.; He, Y.; Hu, D.-C.; Wang, H.-S.; Pan, Y.-M. Green Chem. 2017, 19, 656.
[23] Yan, Z.-M.; Wu, N.; Liang, D.; Wang, H.-S.; Pan, Y.-M. Org. Lett. 2014, 16, 4048.

Outlines

/