Chinese Journal of Organic Chemistry >
Synthesis and Photovoltaic Properties of Organic Dyes Containing Dendritic and 3D Triphenylamine Derivatives
Received date: 2019-02-21
Revised date: 2019-04-14
Online published: 2019-04-19
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21875204, 51173154).
Three organic dyes with dendritic and 3D triphenylamine derivatives as the donor unit, benzoic acid as the acceptor unit and benzothiadiazole (BT) or difluorobenzothiadiazole (DFBT) as the second acceptor were designed and synthesized. The influences of different donors and second acceptors on the photophysical, electrochemical and photovoltaic properties of dye-sensitizers were systematically investigated. The organic dye with dendritic triphenylamine derivative as a donor unit possesses a higher molar absorption coefficient, and the organic dye with 3D triphenylamine derivative (IDTTPA) as a donor unit has a broader absorption spectrum. The dye-sensitized solar cells based on three organic dyes achieved power conversion efficiencies of 5.27%, 4.22% and 5.50%, respectively. After optimizing the battery with 1 mmol·L-1 co-adsorbent chenodeoxycholic acid (CDCA), the power conversion efficiencies of the organic dyes were increased to 5.46%, 4.98% and 6.26%, respectively.
Key words: triphenylamine; benzothiadiazole; organic dye; photovoltaic property
Zhou Xinyun , Xie Lingchao , Wu Kaile , Tan Songting . Synthesis and Photovoltaic Properties of Organic Dyes Containing Dendritic and 3D Triphenylamine Derivatives[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2589 -2598 . DOI: 10.6023/cjoc201902023
[1] O'regan, B.; Grätzel, M. Nature 1991, 353, 737.
[2] Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.
[3] Clifford, J. N.; Martínez-Ferrero, E.; Viterisi, A.; Palomares, E. Chem. Soc. Rev. 2011, 40, 1635.
[4] Wu, Y.-Z.; Zhu, W. H. Chem. Soc. Rev. 2013, 42, 2039.
[5] Kou, D.-X.; Liu, W.-Q.; Hu, L.-H.; Chen, S.-H.; Huang, Y.; Dai, S.-Y. Acta Chim. Sinica 2013, 71, 1149(in Chinese). (寇东星, 刘伟庆, 胡林华, 陈双宏, 黄阳, 戴松元, 化学学报, 2013, 71, 1149.)
[6] Feng, X.-M.; Huang, X.-W.; Tan, Z.; Zhao, B.; Tan, S.-T. Acta Chim. Sinica 2011, 69, 653(in Chinese). (冯小明, 黄先威, 谭卓, 赵斌, 谭松庭, 化学学报, 2011, 69, 653.)
[7] Huang, X.-W.; Deng, J.-Y.; Xu, L.; Shen, P.; Zhao, B.; Tan, S.-T. Acta Chim. Sinica 2012, 70, 1604(in Chinese). (黄先威, 邓继勇, 许律, 沈平, 赵斌, 谭松庭, 化学学报, 2012, 70, 1604.)
[8] Li, J.; Kong, F.-T.; Zhang, C.-N.; Liu, W.-Q.; Dai, S.-Y. Acta Chim. Sinica 2010, 68, 1357(in Chinese). (李洁, 孔凡太, 张昌能, 刘伟庆, 戴松元, 化学学报, 2010, 68, 1357.)
[9] Tang, X.; Wang, Y.-X. Acta Chim. Sinica 2013, 71, 193(in Chinese). (唐笑, 汪禹汛, 化学学报, 2013, 71, 193.)
[10] Wang, J.-W.; Li, Y.; Xu, Y.-L.; Li, Y.; Shen, K.-H. Acta Chim. Sinica 2012, 70, 1278(in Chinese). (王纪伟, 李莹, 徐艳玲, 李杨, 申凯华, 化学学报, 2012, 70, 1278.)
[11] He, J.-J.; Chen, S.-X.; Wang, T.-T.; Zeng, H.-P. Chin. J. Org. Chem. 2012, 32, 472(in Chinese). (何俊杰, 陈舒欣, 王婷婷, 曾和平, 有机化学, 2012, 32, 472.)
[12] Cao, Y.-M.; Bai, Y.; Yu, Q.-J.; Cheng, Y.-M.; Liu, S.; Shi, D.; Gao, F.-F.; Wang, P. J. Phys. Chem. C 2009, 113, 6290.
[13] Yella, A.; Mai, C. L.; Zakeeruddin, S. M.; Chang, S. N.; Hsieh, C. H.; Yeh, C. Y.; Grätzel, M. Angew. Chem., Int. Ed. 2014, 53, 2973.
[14] Gupta, K.; Singh, S. P.; Islam, A.; Han, L.; Chandrasekharam, M. Electrochim. Acta 2015, 174, 581.
[15] Mishra, A.; Fischer, M. K.; Bäuerle, P. Angew. Chem., Int. Ed. 2009, 48, 2474.
[16] Han, L.; Zhou, X.; Ye, Q.; Li, Y.-J.; Gao, J.-R. Chin. J. Org. Chem. 2013, 33, 1000(in Chinese). (韩亮, 周雪, 叶青, 李郁锦, 高建荣, 有机化学, 2013, 33, 1000.)
[17] Wang, Z.-S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J. Phys. Chem. C 2008, 112, 17011.
[18] Su, J.-Y.; Chen, Y.; Wu, Y.-G.; Ghimire, R. P.; Xu, Y.-J.; Liu, X.-J.; Wang, Z.-H.; Liang, M. Electrochim. Acta 2017, 254, 191.
[19] Han, L.; Wu, L.; Tong, Y.-Z.; Zu, X.-Y.; Jiang, S.-L. Chin. J. Org. Chem. 2017, 37, 2940(in Chinese). (韩亮, 吴靓, 童永正, 祖晓燕, 蒋绍亮, 有机化学, 2017, 37, 2940.)
[20] Chen, S.-G.; Jia, H.-L.; Ju, X.-H.; Zheng, H.-G. Dyes Pigm. 2017, 146, 127.
[21] Zhu, B.-Y.; Wu, L.; Ye, Q.; Gao, J.-R.; Han, L. Tetrahedron 2017, 73, 6307.
[22] Liang, M.; Xu, Y.-J.; Wang, X.-D.; Liu, X.-J.; Sun, Z.; Xue, S. Acta Chim. Sinica 2011, 69, 2092(in Chinese). (梁茂, 徐英军, 王旭达, 刘秀杰, 孙喆, 薛松, 化学学报, 2011, 69, 2092.)
[23] Cao, Z.-C.; He, Z.; Deng, L.-J.; Tan, S.-T. Chin. J. Org. Chem. 2014, 34, 340(in Chinese). (曹镇财, 何舟, 邓利军, 谭松庭, 有机化学, 2014, 34, 340.)
[24] Li, Q.-Q.; Shi, J.; Li, H.-Y.; Li, S.; Zhong, C.; Guo, F.-L.; Peng, M.; Hua, J.-L.; Qin, J.-G.; Li, Z. J. Mater. Chem. 2012, 22, 6689.
[25] Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Péchy, P.; Grätzel, M. Chem. Commun. 2008, 5194.
[26] Wu, Y.-Z.; Zhang, X.; Li, W.-Q.; Wang, Z.-S.; Tian, H.; Zhu, W.-H. Adv. Energy Mater. 2012, 2, 149.
[27] Li, Q.-Q.; Lu, L.-L.; Zhong, C.; Shi, J.; Huang, Q.; Jin, X.-B.; Peng, T.-Y.; Qin, J.-G.; Li, Z. J. Phys. Chem. B 2009, 113, 14588.
[28] Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Chem. Commun. 2015, 51, 15894.
[29] Liu, Z.-X.; Duan, K.-K.; Guo, H.; Deng, Y.-H.; Huang, H.-L.; Yi, X.-Y.; Chen, H.-J.; Tan, S.-T. Dyes Pigm. 2017, 140, 312.
[30] Zhu, H.-B.; Li, W.-Q.; Wu, Y.-Z.; Liu, B.; Zhu, S.-Q.; Li, X.; Agren, H.; Zhu, W.-H. ACS Sustainable Chem. Eng. 2014, 2, 1026.
[31] Han, L.; Zu, X.-Y.; Cui, Y.-H.; Wu, H.-B.; Ye, Q.; Gao, J.-R. Org. Electron. 2014, 15, 1536.
[32] Pan, B.; Zhu, Y.-Z.; Qiu, C.-J.; Wang, B.; Zheng, J.-O. Acta Chim. Sinica 2018, 76, 215(in Chinese). (潘彬, 朱义州, 邱昌娟, 王冰, 郑健禺, 化学学报, 2018, 76, 215.)
[33] Chen, H.-J.; Huang, H.; Huang, X.-W.; Clifford, J. N.; Forneli, A.; Palomares, E.; Zheng, X.-Y.; Zheng, L.-P.; Wang, X.-Y.; Shen, P.; Zhao, B.; Tan, S.-T. J. Phys. Chem. C 2010, 114, 3280.
[34] Huang, H.-L.; Chen, H.-J.; Long, J.; Wang, G.; Tan, S.-T. J. Power Sources 2016, 326, 438.
[35] Forster, F.; Rendón López, V.-M.; Oestreich, M. J. Am. Chem. Soc. 2018, 140, 1259.
[36] Song, X.-R.; Zhang, W.-W.; Li, X.; Jiang, H.-Y.; Shen, C.; Zhu, W.-H. J. Mater. Chem. C 2016, 4, 9203.
[37] Liu, Y.-H.; Cao, Y.-M.; Zhang, W.-W.; Stojanovic, M.; Dar, M I.; Péchy, P.; Saygili, Y.; Hagfeldt, A.; Zakeeruddin, S. M.; Grätzel, M. Angew. Chem., Int. Ed. 2018, 130, 14321.
[38] Chen, R.-K.; Yang, X.-C.; Tian, H.-N.; Sun, L.-C. J. Photochem. Photobiol. A 2007, 189, 295.
[39] Shen, P.; Liu, Y.-J.; Huang, X.-W.; Zhao, B.; Xiang, N.; Fei, J.-J.; Liu, L.-M.; Wang, X.-Y.; Huang, H.; Tan, S.-T. Dyes Pigm. 2009, 83, 187.
[40] Liu, X.-S.; Cao, Z.-C.; Huang, H.-L.; Liu, X.-X.; Tan, Y.-Z.; Chen, H.-J.; Pei, Y.; Tan, S.-T. J. Power Sources 2014, 248, 400.
[41] Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597.
/
〈 |
|
〉 |