Articles

Nickel Chloride-Catalyzed Oxidation of Aromatic Hydrocarbon with Sodium Persulfate at the Benzylic Site

  • Liu Lice ,
  • Wu Jieqing ,
  • Ma Hongfei ,
  • Zhang Han ,
  • Gu Jiefan ,
  • Li Yufeng
Expand
  • a College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210036;
    b Nanjing UNOCI Chemical Co., Nanjing 210009

Received date: 2019-03-02

  Revised date: 2019-04-18

  Online published: 2019-04-26

Abstract

A practical method for the oxidation of aromatic side chains was established for the preparation of aromatic aldehydes and ketones. Using NiCl2 as the catalyst, substituted toluenes were oxidized with Na2S2O8 at the benzylic site for the synthesis of the corresponding aldehydes in the yield of 22%~79%. Ethylbenzene analogs were oxidized more easily to obtain the corresponding ketones with 64%~84% yields. The oxidation of benzyl alcohol analogs was completed to acquire the corresponding carbonyl compounds in shorter time with better selectivity and yields. The method has the advantages such as the mild reaction conditions, no requirement for precious metals or additional promoter, and good selectivity.

Cite this article

Liu Lice , Wu Jieqing , Ma Hongfei , Zhang Han , Gu Jiefan , Li Yufeng . Nickel Chloride-Catalyzed Oxidation of Aromatic Hydrocarbon with Sodium Persulfate at the Benzylic Site[J]. Chinese Journal of Organic Chemistry, 2019 , 39(6) : 1688 -1694 . DOI: 10.6023/cjoc201903003

References

[1] (a) Sheldon, R. A.; Kochi, J. K. Metal Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981.
(b) Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis (Oxidation), Pergamon, New York, 1991, Vol. 7.
(c) Zhang, J. T.; Wang, Z. T.; Wang, L.; Wan, C. F.; Zheng, X. Q.; Wang, Z. Y. Green. Chem. 2009, 11, 1973.
[2] Rao, K. T. V.; Rao, P. S. N.; Nagaraju, P.; Prasad, P. S. S.; Lingaiah, N. J. Mol. 2009, 303, 84.
[3] (a) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.
(b) Yiu, S. M.; Wu, Z. B.; Mak, C. K.; Lau, T. C. J. Am. Chem. Soc. 2004, 126, 14921.
(c) Hudlicky, M. Oxidations in Organic Chemistry, American Chemical Society, Washington, DC, 1990.
[4] (a) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105, 2329.
(b) Shi, Z. Z.; Zhang, C.; Tang, C. H.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
(c) Collins, T. J.; Ryabov, A. D. Chem. Rev. 2017, 117, 9140.
(d) Yang, Z. F.; Zhang, H.; Liu, X. R.; Wang, B.; Lutz, A. Chin. J. Org. Chem. 2019, 39, 59 (in Chinese).(杨帆致, 张晗, 刘旭日, 王博, Lutz Ackermann, 有机化学, 2019, 39, 59.)
[5] (a) Ohkubo, K.; Fukuzumi, S. Org. Lett. 2000, 2, 3647.
(b) Kei, O.; Kyou, S.; Kohei, M.; Shunichi, F. J. Am. Chem. Soc. 2003, 125, 12850.
(c) Pahari, S. K.; Pal, P.; Srivastava, D. N.; Ghosh, S. C.; Panda, A. B. Chem. Commun. 2015, 51, 10322.
(d) Li, S. L.; Zhu, B.; Lee, R.; Qiao, B. K.; Jiang, Z. Y. Org. Chem. Front. 2018, 5, 380.
[6] (a) Jr, L. Q.; Tolman, W. B. Nature 2008, 455. 333.
(b) Rickert, A.; Krombach, V.; Hamers, O.; Zorn, H.; Maison, W. G. Green Chem. 2012, 14, 639.
(c) Roiban, G. D.; Agudo, R.; Reetz, M. T. Angew. Chem., Int. Ed. 2014, 53, 8659.
(d) Nastri, F.; Chino, M.; Maglio, O.; Damodaran, A. B.; Lu, Y.; Lombardi, A. Chem. Soc. Rev. 2016, 45, 5020.
[7] (a) Nam, W. Acc. Chem. Res. 2007, 40, 522.
(b) Ding, Z. D.; Zhu, W.; Li, T.; Shen, R.; Li, Y. X.; Li, Z. J.; Ren, X. H.; Gu, Z. G. Dalton Trans. 2017, 46, 11372.
[8] (a) Qi, J. Y.; Ma, H. X.; Li, X. J.; Zhou, Z. Y.; Choi, M. C. K.; Chan, A. S. C.; Yang, Q. Y. Chem. Commun. 2003, 1294.
(b) Wang, B.; Mao, W.; Ma, H. Z. Ind. Eng. Chem. Res. 2009, 48, 440.
(c) Potapenko, E. V.; Andreev, P. Y. Russ. J. Appl. Chem. 2011, 84, 984.
[9] (a) Lane, B.-S.; Burgess, K. Chem. Rev. 2003, 103, 2457.
(b) Wang, Y.; Li, H. R.; Yao, J.; Wang, X. C.; Antoniettia, M. Chem. Sci. 2011, 2, 446.
(c) Shen, D. Y.; Miao, C. X.; Wang, S. F.; Xia, C. G.; Sun, W. Org. Lett. 2014, 16, 1108.
(d) Verma, S.; Baig, R. B. N.; Nadagouda, M. N.; Varma, R. S. ACS Sustainable Chem. Eng. 2016, 4, 2333.
(e) Saisaha, P.; Dong, J. J.; Meinds, T. G.; Johannes, W.; Hage, R.; Mecozzi, F.; Kasper, J. B.; Browne, W. R. ACS Catal. 2016, 6, 3486.
(f) Konstantin, P.; Bryliakov Chem. Rev. 2017, 117, 11406.
[10] (a) Halina, W.; Soroko, G.; Jacek, M. Synth. Commun. 2008, 38, 2000.
(b) Hossain, M. M.; Shyu, S. G. Tetrahedron 2016, 72, 4252.
(c) Xu, W. X.; Zhang, Z. Q.; Zhao, X.; Li, J. Coord. Chem. 2017, 70, 746.
(d) Chen, Y.; Jie, S. S.; Yang, C. Q.; Liu, Z. G. Appl. Surf. Sci. 2017, 419, 98.
(e) Sun, Q.; Song, X. Y.; Gao, L.; Chen, W.; Li, Y.; Mao, L.; Yang, J. H. Chem. Pap. 2018, 72, 2203.
[11] (a) Badri, R.; Adlu, M.; Mohammadi, M. K. Arabian J. Chem. 2015, 8, 62.
(b) Hu, Y. X.; Zhou, L. H.; Lu, W. J. Synthesis 2017, 49, 4007.
(c) Han, W.; Zhao, H. Y. CN 107216242, 2017[Chem. Abstr. 2017, 167, 528688].
[12] Jakob, H.; Leininger, S.; Lehmann, T.; Jacobi, S.; Gutewort, S. Ullmann's Encyclopedia of Industrial Chemistry, Weinheim, W. C. Germany, 2012, Vol. 26, p. 308.
[13] Li, Y. F.; Zhang, H.; Dai, C. W.; Liu, L. C.; Ma, H. F.; Pu, H. Z. Tetrahedron 2018, 74, 3712.
[14] Lin, X.; Nie, Z. Z.; Zhang, L. Y.; Mei, S. C.; Chen, Y. Green Chem. 2017, 19, 2164.
[15] Zhang, B. S.; Zhu, R. L.; Liu, Z. G.; Xin, L.; Zhang, J. S. Org. Chem. Front. 2016, 3, 1326.
[16] Guo, T. F.; Gao, Y.; Li, Z. J.; Liu, J. J.; Guo, K. Synlett 2019, 30, 329.
[17] Gholizadeh, M.; Baltork, I. M. Bull. Korean Chem. Soc. 2005, 26, 11.
[18] Castle, R. N.; Riebsomer, J. L. ACS Sustainable Chem. Eng. 1955, 21, 142.
[19] Richard, R. B.; Louise, J. B. J. Anal. Appl. Pyrolysis 2004, 71, 223.
[20] Cui, L. Q.; Liu, K.; Zhang, C. Org. Biomol. Chem. 2011, 9, 2258.
[21] Kaneyuki, H. Bull. Chem. Soc. Jpn. 1961, 35, 519.

Outlines

/