Chinese Journal of Organic Chemistry >
Recent Advances in the α-C(sp3)-H Bond Functionalization of Glycine Derivatives
Received date: 2019-03-03
Revised date: 2019-04-15
Online published: 2019-04-26
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21602027, 11765002), the Foundation of Jiangxi Educational Committee (No. GJJ170458) and the China Postdoctoral Science Foundation (No. 2018M632595).
α-Amino acids are the units of proteins, which not only widely occur in many biological important compounds and natural products, but also are useful as organic catalysts or ligands for asymmetric synthesis. Among them, glycines are particularly useful building blocks in organic synthesis. Direct C(sp3)-H bond functionalization of glycine derivatives provided an attractive synthesis strategy for the construction of a variety of α-substituted α-amino acids. The recent progress in the α-C(sp3)-H bond activation of glycine derivatives, with various reagents to form carbon-carbon and carbon-heteroatom bond, and oxidative coupling/cyclization reaction involving glycine derivatives is reviewed.
Zhu Zhiqiang , Xiao Lijin , Xie Zongbo , Le Zhanggao . Recent Advances in the α-C(sp3)-H Bond Functionalization of Glycine Derivatives[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2345 -2364 . DOI: 10.6023/cjoc201903006
[1] (a) Pollegioni, L.; Servi, S. Non-natural Amino Acids:Methods and Protocols, Springer, New York, 2012.
(b) Hughes, A. B. Amino Acids, Peptides and Proteins in Organic Chemistry, Wiley VCH, Weinheim, 2011.
[2] (a) Soloshonok, V. A.; Izawa, K. Asymmetric Synthesis and Application of α-Amino Acids, American Chemical Society, Washington DC, 2009, Vol. 1009.
(b) He, G.; Wang, B.; Nack, W. A.; Chen, G. Acc. Chem. Res. 2016, 49, 635.
(c) Bhat, S. V.; Nagasampagi, B. A.; Sivakumar, M. Chemistry of Natural Products, Springer, Berlin, 2005, p. 317.
(d) Li, X.; Xiong, W.; Ding, Q. Chin. J. Org. Chem. 2019, 39, 1874(in Chinese). (李小芳, 熊伟康, 丁秋平, 有机化学, 2019, 39, 1874.)
[3] (a) Albericio, F.; Kruger, H. G. Future Med. Chem. 2012, 4, 1527.
(b) Craik, D. J.; Fairlie, D. P.; Liras, S.; Price, D. Chem. Biol. Drug Des. 2013, 81, 136.
(c) Kaspar, A. A.; Reichert, J. M. Drug Discovery Today 2013, 18, 807.
[4] (a) Noisier, A. F. M.; Brimble, M. A. Chem. Rev. 2014, 114, 8775.
(b) Metz, A. M.; Kozlowski, M. C. J. Org. Chem. 2015, 80, 1.
[5] (a) Bauer, M.; Wang, W.; Lorion, M. M.; Dong, C.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 203.
(b) Stepan, A. F.; White, M. C. Nature 2016, 537, 214.
(c) Uhlig, T.; Kyprianou, T.; Martinelli, F. G.; Oppici, C. A.; Heiligers, D.; Heiligers, D.; Hills, X. R.; Calvo, P. V. Eup. Open Proteomics 2014, 4, 58.
(d) Xiao, H.; Chatterjee, A.; Choi, S. H.; Bajjuri, K. M.; Sinha, S. C.; Schultz, P. G. Angew. Chem., Int. Ed. 2013, 52, 14080.
[6] (a) Strecker, A. Ann. Chem. Pharm. 1850, 75, 27.
(b) Ugi, I. Angew. Chem., Int. Ed. 1962, 1, 8.
(c) Petasis, N. A.; Zavialov, A. I. J. Am. Chem. Soc. 1997, 119, 445.
[7] (a) Bayer, A.; Kazmaier, U. J. Org. Chem. 2014, 79, 8491.
(b) Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013.
[8] (a) Brown, Jihn. M.; Cooley, Nei. A. Chem. Rev. 1988, 88, 1031.
(b) Godula, K.; Sames, D. Science 2006, 312, 67.
(c) Bergman, R. G. Nature 2007, 446, 391.
[9] (a) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(b) Sun, C.; L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293.
(c) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857.
(d) Zhang, J.; Lu, Q. Q.; Liu, C.; Lei, A. W. Chin. J. Org. Chem. 2015, 35, 743(in Chinese). (张剑, 陆庆全, 刘超, 雷爱文, 有机化学, 2015, 35, 743.)
(e) Pei, P. K.; Zhang, F.; Yi, H.; Lei, A. W. Acta Chim. Sinica 2017, 75, 15(in Chinese). (裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.)
[10] (a) Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Acc. Chem. Res. 2012, 45, 788.
(b) Roizen, J. L.; Harvey, M. E.; Du Bois, J. Acc. Chem. Res. 2012, 45, 911.
(c) Yang, L.; Huang, H. Chem. Rev. 2015, 115, 3468.
(d) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333.
(e) Liu, W.; Zheng, X, Y.; Zeng, J. G.; Cheng, P. Chin. J. Org. Chem. 2017, 37, 1(in Chinese). (刘薇, 郑昕宇, 曾建国, 程辟, 有机化学, 2017, 37, 1.)
[11] (a) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2005, 127, 3672.
(b) Li, C. J. Acc. Chem. Res. 2009, 42, 335.
[12] (a) Zhu, Z. Q.; Bai, P.; Huang, Z. Z. Org. Lett. 2014, 16, 4881.
(b) Salman, M.; Zhu, Z. Q.; Huang, Z. Z. Org. Lett. 2016, 18, 1526.
(c) Zhu, Z. Q.; Xie, Z. B.; Le, Z. G. J. Org. Chem. 2016, 81, 9449.
(d) Zhu, Z. Q.; Xie, Z. B.; Le, Z. G. Synlett. 2017, 28, 485.
(e) Zhu, Z. Q.; Xiao L. J.; Chen, Y.; Zhu, H. B.; Xie, Z. B.; Le, Z. G. Synthesis 2018, 50, 2775.
(f) Xiao L. J.; Zhu, Z. Q.; Guo, D.; Xie, Z. B.; Lu, Y.; Le, Z. G. Synlett 2018, 29, 1659.
(g) Zhu, Z. Q.; Xiao L. J.; Zhou, C. C.; Song, H. L.; Xie, Z. B.; Le, Z. G. Tetrahedron Lett. 2018, 59, 3326.
(h) Zhu, Z. Q.; Xiao L. J.; Guo, D.; Chen, X.; Ji, J. J.; Zhu, X.; Xie, Z. B.; Le, Z. G. J. Org. Chem. 2019, 84, 435.
[13] (a) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1960, 82, 2640.
(b) Bras, J. L.; Muzart, J. Chem. Rev. 2011, 111, 1170.
(c) Prier, C. K.; Rankic, D. A.; Mac Millan, D. W. C. Chem. Rev. 2013, 113, 5322.
[14] Luo, Y. R. Handbook of Bond Dissociation Energy in Organic Compound, CRC Press, Boca Raton, 2002.
[15] (a) Li, Z.; Bohle, D. S.; Li, C. J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 8928.
(b) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2006, 128, 56.
[16] Zhao, L.; Li, C. J. Angew. Chem., Int. Ed. 2008, 47, 7075.
[17] Luo, M. H.; Jiang, Y. Y.; Xu, K.; Liu, Y. G.; Sun, B. G.; Zeng, C. C. Beilstein J. Org. Chem. 2018, 14, 499.
[18] Sud, A.; Sureshkumar, D.; Klussmann, M. Chem. Commun. 2009, 3169.
[19] Xie, J.; Huang, Z. Z. Angew. Chem., Int. Ed. 2010, 49, 10181.
[20] Liu, P.; Wang, Z.; Lin, J.; Hu, X. Eur. J. Org. Chem. 2012, 2012, 1583.
[21] Gao, X. W.; Meng, Q. Y.; Xiang, M.; Chen, B.; Feng, K.; Tung, C. H.; Wu, L. Z. Adv. Synth. Catal. 2013, 355, 2158.
[22] Zhang, G.; Zhang, Y.; Wang, R. Angew. Chem., Int. Ed. 2011, 50, 10429.
[23] Tan, Y. Q.; Yuan, W.; Gong, L.; Meggers, E. Angew. Chem., Int. Ed. 2015, 127, 13237.
[24] (a) Deng, G. J.; Zhao, L.; Li, C. J. Angew. Chem., Int. Ed. 2008, 47, 6278.
(b) Ochiai, M.; Miyamato, K.; Kaneaki, T.; Hayashi, S.; Nakanishi, W. Science 2011, 332, 448.
(c) Tran, B.; Li, B.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 2555.
[25] Forkin, A. A.; Schreiner, P. R. Chem. Rev. 2002, 102, 1551.
[26] Wei, W. T.; Song, R. J.; Li, J. H. Adv. Synth. Catal. 2014, 356, 1703.
[27] Peng, H.; Yu, J. T.; Jiang, Y.; Yang, H.; Cheng, J. J. Org. Chem. 2014, 79, 9847.
[28] San Segundo, M.; Guerrero, I.; Correa, A. Org. Lett. 2017, 19, 5288.
[29] Mutra, M. R.; Dhandabani, G. K.; Wang, J. J. Adv. Synth. Catal. 2018, 360, 3960.
[30] Segundo, M. S.; Correa, A. ChemSusChem. 2018, 11, 3893.
[31] Li, K.; Tan, G.; Huang, J.; Song, F.; You, J. Angew. Chem., Int. Ed. 2013, 52, 12942.
[32] Li, K.; Wu, Q.; Lan, J.; You, J. S. Nat. Chem. 2015, 6, 8404.
[33] Tan, M.; Li, K.; Yin, J.; You, J. Chem. Commun. 2018, 54, 1221.
[34] (a) Inagaki, A.; Akita, M. Coord. Chem. Rev. 2010, 254, 1220.
(b) Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40, 102.
(c) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
(d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[35] (a) McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011, 334, 1114.
(b) Petronijevic, F. R.; Nappi, M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2013, 135, 18323.
(c) Pirnot, M. T.; Rankic, D. A.; Martin, D. B.; MacMillan, D. W. C. Science 2013, 339, 1593.
[36] Xuan, J.; Zeng, T. T.; Feng, Z. J.; Deng, Q. H.; Chen, J. R.; Lu, L. Q.; Xiao, W. J.; Alper H. Angew. Chem., Int. Ed. 2015, 54, 1625.
[37] Ding, W.; Lu, L. Q.; Liu, J.; Liu, D.; Song, H. T.; Xiao W. J. J. Org. Chem. 2016, 81, 7237.
[38] Wang, C.; Guo, M. Z.; Qi, R. P.; Shang, Q. Y.; Liu, Q. Y.; Wang, S.; Zhao, L.; Wang, R.; Xu, Z. Q. Angew. Chem., Int. Ed. 2018, 130, 16067.
[39] (a) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2005, 127, 3672.
(b) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2005, 127, 6968.
(c) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 11810.
[40] Xie, Z.; Liu, X.; Liu, L. Org. Lett. 2016, 18, 2982.
[41] (a) Muller, J.; Saunders, J. O. F.; Salituro, G.; Travins, J. M.; Yan, S.; Zhao, F.; Su, S. M. ACS Med. Chem. Lett. 2012, 3, 850.
(b) Zhang, L.; Wang, X.; Li, X.; Xu, W. J. Enzyme. Inhib. Med. Chem. 2014, 29, 333.
(c) Weigel, L. F.; Nitsche, C.; Graf, D.; Bartenschlager, R.; Klein, C. D. J. Med. Chem. 2015, 58, 7719.
[42] (a) Denis, J. N.; Correa, A.; Greene, A. E. J. Org. Chem. 1991, 56, 6939.
(b) Buyck, T.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2013, 52, 12714.
[43] (a) Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 4312.
(b) Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656.
[44] Zhao, L.; Baslé, O.; Li, C. J. Proc. Natl. Acd. Sci. U. S. A. 2009, 106, 4106.
[45] Zhu, S. Q.; Rueping, M. Chem. Commun. 2012, 48, 11960.
[46] Wang, Z. Q.; Hu, M.; Huang, X. C.; Gong, L. B.; Xie, Y. X.; Li, J. H. J. Org. Chem. 2012, 77, 8705.
[47] Huo, C.; Wang, C.; Wu, M.; Jia, X.; Xie, H.; Yuan, Y. Adv. Synth. Catal. 2014, 356, 411.
[48] Huo, C.; Yuan, Y.; Wu, M.; Jia, X.; Wang, X.; Chen, F.; Tang, J. Angew. Chem. 2014, 53, 13544.
[49] Gao, X. W.; Meng, Q. Y.; Li, J. X.; Zhong, J. J.; Lei, T.; Li, X. B.; Tung, C. H.; Wu, L. Z. ACS Catal. 2015, 5, 2391.
[50] Zhang, Y.; Ni, M. J.; Feng, B. N. Org. Biomol. Chem. 2016, 14, 1550.
[51] Wu, J. C.; Song, R. J.; Wang, Z. Q.; Huang, X. C.; Xie, Y. X.; Li, J. H. Angew. Chem., Int. Ed. 2012, 51, 3453.
[52] Huo, C.; Wang, C.; Sun, C.; Jia, X.; Wang, X.; Chang, W.; Wu, M. Adv. Synth. Catal. 2013, 355, 1911.
[53] Li, S. L.; Yang, X. R.; Wang, Y. W.; Zhou, H.; Zhang, B. Y.; Huang, G. X.; Zhang, Y.; Li Y. Adv. Synth. Catal. 2018, 360, 4452.
[54] Zhou, J. L.; Liu, J. C.; Chen, Q. Y. Chin. J. Org. Chem. 2009, 29, 1708(in Chinese). (周建良, 刘建超, 陈启元, 有机化学, 2009, 29, 1708.)
[55] Jin, C. A.; Xu, Q.; Feng, G. F.; Jin, Y.; Zhang, L. Y. Chin. J. Org. Chem. 2018, 38, 775(in Chinese). (金城安, 徐庆, 冯高峰, 金阳, 张连阳, 有机化学, 2018, 38, 775.)
[56] Jiao, J.; Zhang, J. R.; Liao, Y. Y.; Xu, L.; Hu, M.; Tang, R. Y. RSC Adv. 2017, 7, 30152.
[57] Ramana, D. V.; Chowhan, L. R.; Chandrasekharam, M. ChemistrySelect 2017, 2, 2241.
[58] Wei, Y. Y.; Wang, J.; Wang, Y. J.; Yao, X. Q.; Yang, C. X.; Huo, C. Org. Biomol. Chem. 2018, 16, 4985.
[59] Gao, Y. Z.; Tang, G.; Zhao, Y. F. Chin. J. Org. Chem. 2018, 38, 62(in Chinese). (高玉珍, 唐果, 赵玉芬, 有机化学, 2018, 38, 62.)
[60] Baslé, O.; Li, C. J. Chem. Commun. 2009, 4124.
[61] Yang, B.; Yang, T. T.; Li, X. A.; Wang, J. J.; Yang, S. D. Org. Lett. 2013, 15, 5024.
[62] Zhi, H.; Ung, S. P. M.; Liu, Y.; Zhao, L.; Li, C. J. Adv. Synth. Catal. 2016, 358, 2553.
[63] Jia, X.; Liu, X.; Shao, Y.; Yuan, Y.; Zhu, Y.; Hou, W.; Zhang, X. Adv. Synth. Catal. 2017, 359, 4399.
[64] Liu, X. X.; Wu, Z. Y.; He, Y. Q.; Zhou, X. Q.; Hu, T.; Ma, C. W.; Huang, G. S. Adv. Synth. Catal. 2016, 358, 2385.
[65] Chen, C.; Zhu, M. H.; Jiang, L. H.; Zeng, Z. B.; Yi, N. N.; Xiang, J. N. Org. Biomol. Chem. 2017, 15, 8134.
[66] Daggupati, R.; Malapak, C. Org. Chem. Front. 2018, 5, 788.
[67] Liu, X.; Pu, J.; Luo, X.; Cui, X.; Wu, Z.; Huang, G. Org. Chem. Front. 2018, 5, 361.
[68] (a) Povarov, L. S.; Mikhailov, B. M. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1963, 953.
(b) Povarov, L. S.; Grigos, V. I.; Mikhailov, B. M. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1963, 2039.
[69] Richter, H.; García Mancheño, O. Org. Lett. 2011, 13, 6066.
[70] Liu, P.; Wang, Z.; Lin, J.; Hu, X. Eur. J. Org. Chem. 2012, 1583.
[71] Rohlmann, R.; Stopka, T.; Richter, H.; Mancheño, O. J. Org. Chem. 2013, 78, 6050.
[72] Jia, X.; Peng, F.; Qing, C.; Huo, C.; Wang, X. Org. Lett. 2012, 14, 4030.
[73] Jia, X.; Huo, W.; Shao, Y.; Yuan, Y.; Chen, Q.; Li, P.; Liu, X.; Ji, H. Chem.-Eur. J. 2017, 23, 12980.
[74] Jia, X. D.; Wang, Y.; Peng, F.; Huo, C.; Yu, L.; Liu, J.; Wang, X. Adv. Synth. Catal. 2014, 356, 1210.
[75] (a) Bolm, C.; Legros, J.; Le Paih, J. L.; Zani, L. Chem. Rev. 2004, 104, 6217.
(b) Bauer, I.; Knölker, H. J. Chem. Rev. 2015, 115, 3170.
[76] Li, Z.; Cao, L.; Li, C. J. Angew. Chem., Int. Ed. 2007, 46, 6505.
[77] Huo, C.; Chen, F.; Yuan, Y.; Xie, H.; Wang, Y. Org. Lett. 2015, 17, 5028.
[78] Huo, C.; Yuan, Y.; Chen, F.; Wang, Y. Adv. Synth. Catal. 2015, 357, 3648.
[79] Huo, C.; Xie, H.; Chen, F.; Tang, J.; Wang, Y. Adv. Synth. Catal. 2016, 358, 724.
[80] Wei, W. T.; Li, H. B.; Song, R. J.; Li, J. H. Chem. Commun. 2015, 51, 11325.
[81] (a) Jia, X.; Wang, Y.; Peng, F.; Huo, C.; Yu, L.; Liu, J.; Wang, X. J. Org. Chem. 2013, 78, 9450.
(b) Wang, Y.; Peng, F.; Liu, J.; Huo, C.; Wang, X.; Jia, X. J. Org. Chem. 2015, 80, 609.
(c) Liu, J.; Wang, Y.; Yu, L.; Huo, C.; Wang, X.; Jia, X. Adv. Synth. Catal. 2014, 356, 3214.
(d) Liu, G.; Quian, J.; Hua, J.; Cai, F.; Li, X.; Liu, L. Org. Biomol. Chem. 2016, 14, 1147.
(e) Xie, Z.; Jia, J.; Liu, X.; Liu, L. Adv. Synth. Catal. 2016, 358, 919.
(e) Ni, M.; Zhang, Y.; Gong, T.; Feng, B. Adv. Synth. Catal. 2017, 359, 824.
(f) Yang, X.; Li, L.; Li, Y.; Zhang, Y. J. Org. Chem. 2016, 81, 12433.
(g) Liu, X.; Shao, Y.; Li, P.; Ji, H.; Yuan, Y.; Jia, X. Tetrahedron Lett. 2018, 59, 637.
(h) Meng, Q. Y.; Gao, X. W.; Lei, T.; Liu, Z.; Zhan, F.; Li, Z. J.; Zhong, J. J.; Xiao, H.; Feng, K.; Chen, B.; Tao, Y.; Tung, C. H.; Wu, L. Z. Sci. Adv. 2017, 3, e1700666.
[82] Deng, Q. H.; Zou, Y. Q.; Lu, L. Q.; Tang, Z. L.; Chen, J. R.; Xiao, W. J. Chem.-Asian J. 2014, 9, 2432.
[83] Li, Y. J.; Li, X.; Zhang, S. X.; Zhao, Y. L.; Liu, Q. Chem. Commun. 2015, 51, 11565.
[84] Huo, C.; Yuan, Y.; Chen, F.; Tang, J.; Wang, Y. Org. Lett. 2015, 17, 4208.
[85] Xie, J.; Huang, Y.; Song, H.; Liu, Y.; Wang, Q. Org. Lett. 2017, 19, 6056.
[86] Li, H.; Huang, S.; Wang, Y.; Huo, C. Org. Lett. 2018, 20, 92.
[87] Tang, L.; Li, X. M.; Matuska, J. H.; He, Y. H.; Guan, Z. Org. Lett. 2018, 20, 5618.
/
〈 |
|
〉 |