REVIEW

Advances in Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones

  • Zhang Xiaopeng ,
  • Zhu Yanjie ,
  • Zhu Yisong ,
  • Li Zhengwei ,
  • Zhang Guisheng
Expand
  • Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007

Received date: 2019-03-14

  Revised date: 2019-04-11

  Online published: 2019-04-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772033, U1604285) and the Program of Introducing Talents of Discipline to Universities (111 Project, No. D17007).

Abstract

2,3-Dihydroquinazolin-4(1H)-one compounds are an important class of nitrogen-containing fused heterocycles, which possess a wide range of pharmacological and biological activities and have important applications in the fields of synthesis and research & development of drugs. Therefore, its synthetic methods have also attracted considerable attention. In this paper, the main advances in the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and their proposed reaction mechanisms from the raw materials such as o-aminobenzamides, isatoic anhydrides, o-nitrobenzamides, o-azidobenzamide, o-bromo-benzamide, o-bromobenzonitrile, o-aminobenzoic acids, o-aminobenzonitrile, o-amino-N-(propa-1,2-dienyl)benzamides, and N-alkyl anilines were introduced and reviewed, respectively. Finally, the synthesis of these compounds was summarized and the prospect of their development was prospected.

Cite this article

Zhang Xiaopeng , Zhu Yanjie , Zhu Yisong , Li Zhengwei , Zhang Guisheng . Advances in Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2392 -2402 . DOI: 10.6023/cjoc201903025

References

[1] Kamble, A. A.; Kamble, R. R.; Chougala, L. S.; Kadadevarmath, J. S.; Maidur, S. R.; Patil, P. S.; Kumbar, M. N.; Marganakop, S. B. ChemistrySelect 2017, 2, 6882.
[2] Kamal, A.; Bharathi, E. V.; Reddy, J. S.; Ramaiah, M. J.; Dastagiri, D.; Reddy, M. K.; Viswanath, A.; Reddy, T. L.; Shaik, T. B.; Pushpavalli, S. N. C. V. L.; Bhadra, M. P. Eur. J. Med. Chem. 2011, 46, 691.
[3] Chinigo, G. M.; Paige, M.; Grindrod, S.; Hamel, E.; Dakshana-murthy, S.; Chruszcz, M.; Minor, W.; Brown, M. L. J. Med. Chem. 2008, 51, 4620.
[4] Roopan, S. M.; Khan, F. N.; Jin, J. S.; Kumar, R. S. Res. Chem. Intermed. 2011, 37, 919.
[5] Liao, C. H.; Pan, S. L.; Guh, J. H.; Chang, Y. L.; Pai, H. C.; Lin, C. H.; Teng, C. M. Carcinogenesis 2005, 26, 968.
[6] Hour, M. J.; Huang, L. J.; Kuo, S. C.; Xia, Y.; Bastow, K.; Nakanishi, Y.; Hamel, E.; Lee, K. H. J. Med. Chem. 2000, 43, 4479.
[7] Li, X. Q.; Wang, R. T.; Liu, Y.; Liu, Y.; Zheng, H.; Feng, Y. B.; Zhao, N.; Geng, H. B.; Zhang, W. Z.; Wen, A. D. BMC Pharmacol. Toxicol. 2017, 18, 73.
[8] Ibrahim, S. M.; Abo-Kul, M.; Soltan, M. K.; Barakat, W.; Helal, A. S. Med. Chem. 2014, 4, 351.
[9] Cheng, X.; Vellalath, S.; Goddard, R.; List, B. J. Am. Chem. Soc. 2008, 130, 15786.
[10] Hemalatha, K.; Madhumitha, G.; Vasavi, C. S.; Munusami, P. J. Photochem. Photobiol. B 2015, 143, 139.
[11] Yu, H.; Jin, H. W.; Gong, W. Z.; Wang, Z. L.; Liang, H. P. Molecules 2013, 18, 1826.
[12] El-Sabbagh, O. I.; Ibrahim, S. M.; Baraka, M. M.; Kothayer, H. Arch. Pharm. Chem. Life Sci. 2010, 343, 274.
[13] Zhang, J.; Cheng, P.; Ma, Y. M.; Liu, J.; Miao, Z.; Ren, D. C.; Fan, C.; Liang, M.; Liu, L. Tetrahedron Lett. 2016, 57, 5271.
[14] Mohammadi, A. A.; Rohi, H.; Soorkic, A. A. J. Heterocycl. Chem. 2013, 50, 1129.
[15] Xu, Z. H.; Zhang, Y. P.; Fu, H. C.; Zhong, H. M.; Hong, K.; Zhu, W. M. Bioorg. Med. Chem. Lett. 2011, 21, 4005.
[16] Ferrando, C.; Foy, J. M.; Pratt, C. N. F. W.; Purvis, J. R. J. Pharm. Pharmacol. 1981, 33, 219.
[17] Steinmuller, S. R.; Puschett, J. B. Kidney Int. 1972, 1, 169.
[18] Wang, Z. W.; Wang, M. X.; Yao, X.; Li, Y.; Tan, J.; Wang, L. Z.; Qiao, W. T.; Geng, Y. Q.;, Liu, Y. X.; Wang, Q. M. Eur. J. Med. Chem. 2012, 53, 275.
[19] Kothayer, H.; Ibrahim, S. M.; Soltan, M. K.; Rezq, S.; Mahmoud, S. S. Drug Dev. Res. 2019, 80, 343..
[20] Derbyshire, E. R.; Min, J.; Guiguemde, W. A.; Clark, J. A.; Connelly, M. C.; Magalhães, A. D.; Guy, R. K.; Clardy, J. Antimicrob. Agents Ch. 2014, 58, 1516.
[21] Hemalatha, K.; Madhumitha, G. J. Lumin. 2016, 178, 163.
[22] Singh, M.; Raghav, N. Bioorg. Chem. 2015, 59, 12.
[23] Sultana, N.; Sarfraz, M.; Tanoli, S. T.; Akram, M. S.; Sadiq, A.; Rashid, U.; Tariq, M. I. Bioorg. Chem. 2017, 72, 256.
[24] Sarfraz, M.; Sultana, N.; Rashid, U.; Akram, M. S.; Sadiq, A.; Tariq, M. I. Bioorg. Chem. 2017, 70, 237.
[25] Xing, J. H.; Yang, L. Y.; Yang, Y. F.; Zhao, L. L.; Wei, Q. Q.; Zhang, J.; Zhou, J. P.; Zhang, H. B. Eur. J. Med. Chem. 2017, 125, 411.
[26] Birch, H. L.; Buckley, G. M.; Davies, N.; Dyke, H. J.; Frost, E. J.; Gilbert, P. J.; Hannah, D. R.; Haughan, A. F.; Madigan, M. J.; Morgan, T.; Pitt, W. R.; Ratcliffe, A. J.; Ray, N. C.; Richard, M. D.; Sharpe, A.; Taylor, A. J.; Whitworth, J. M.; Williams, S. C. Bioorg. Med. Chem. Lett. 2005, 15, 5335.
[27] Katoh, T.; Takai, T.; Yukawa, T.; Tsukamoto, T.; Watanabe, E.; Mototani, H.; Arita, T.; Hayashi, H.; Nakagawa, H.; Klein, M. G.; Zou, H.; Sang, B. C.; Snell, G.; Nakada, Y. Bioorg. Med. Chem. 2016, 24, 2466.
[28] Zhang, H.; Liu, H.; Luo, X.; Wang, Y. X.; Liu, Y.; Jin, H. W.; Liu, Z. M.; Yang, W.; Yu, P. L.; Zhang, L. R.; Zhang, L. H. Eur. J. Med. Chem. 2018, 152, 235.
[29] Meinwald, Y. C.; Meinwald, J.; Eisner, T. Science 1966, 154, 390.
[30] Wang, X.; Yin, J.; Shi, L.; Zhang, G. P.; Song, B. A. Eur. J. Med. Chem. 2014, 77, 65.
[31] Giri, R.; Lam, J. K.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 686.
[32] Diener, M. E.; Metrano, A. J.; Kusano, S.; Miller, S. J. J. Am. Chem. Soc. 2015, 137, 12369.
[33] Akyüz, G.; Mente?e, E.; Emirik, M.; Balta?, N. Bioorg. Chem. 2018, 80, 121.
[34] Perreault, S.; Chandrasekhar, J.; Cui, Z. H.; Evarts, J.; Hao, J.; Kaplan, J. A.; Kashishian, A.; Keegan, K. S.; Kenney, T.; Koditek, D.; Lad, L.; Lepist, E. I.; McGrath, M. E.; Patel, L.; Phillips, B.; Therrien, J.; Treiberg, J.; Yahiaoui, A.; Phillips, G. J. Med. Chem. 2017, 60, 1555.
[35] Badolato, M.; Aiello, F.; Neamati, N. RSC Adv. 2018, 8, 20894.
[36] Cheng, X.; Vellalath, S.; Goddard, R.; List, Benjamin. J. Am. Chem. Soc. 2008, 130, 15786.
[37] Deng, T.; Wang, H. J.; Cai, C. J. Fluorine Chem. 2015, 169, 72.
[38] Tran, P. H.; Bui, T. P. T.; Lam, X. Q. B.; Nguyen, X. T. T. RSC Adv. 2018, 8, 36392.
[39] Sharma, M.; Pandey, S.; Chauhan, K.; Sharma, D.; Kumar, B.; Chauhan, P. M. S. J. Org. Chem. 2012, 77, 929.
[40] Sriramoju, V.; Kurva, S.; Chong, Y.; Madabhushi, S. New J. Chem. 2018, 42, 3188.
[41] Yamaguchi, K.; Kawaguchi, S.; Sonoda, M.; Tanimori, S.; Ogawa, A. Tetrahedron Lett. 2017, 58, 4043.
[42] Patil, N. T.; Lakshmi, P. G. V. V.; Singh, V. Eur. J. Org. Chem. 2010, 4719.
[43] Patil, N. T.; Kavthe, R. D.; Raut, V. S.; Shinde, V. S.; Sridhar, B. J. Org. Chem. 2010, 75, 1277.
[44] Sawatzky, E.; Wehle, S.; Kling, B.; Wendrich, J.; Bringmann, G.; Sotriffer, C. A.; Heilmann, J.; Decker, M. J. Med. Chem. 2016, 59, 2067.
[45] Noel, R.; Gupta, N.; Pons, V.; Goudet, A.; Garcia-Castillo, M. D.; Michau, A.; Martinez, J.; Buisson, D. A.; Johannes, L.; Gillet, D.; Barbier, J.; Cintrat, J. C. J. Med. Chem. 2013, 56, 3404.
[46] Razavi, N.; Akhlaghinia, B. New J. Chem. 2016, 40, 447.
[47] Zhang, J.; Ren, D. C.; Ma, Y. M.; Wang, W. T.; Wu, H. Tet-rahedron 2014, 70, 5274.
[48] Carney, D. W.; Nelson, C. D. S.; Ferris, B. D.; Stevens, J. P.; Lipovsky, A.; Kazakov, T.; DiMaio, D.; Atwood, W. J.; Sello, J. K. Bioorg. Med. Chem. 2014, 22, 4836.
[49] Manivannan, E.; Chaturvedi, S. C. Bioorg. Med. Chem. 2012, 20, 7119.
[50] Jacob, E. D.; Mathew, L.; Thomas, B. J. Chem. Sci. 2007, 119, 47.
[51] Zhuang, Q. Y.; Fu, Y. C.; Tang, D.; Zha, Y. Y.; Rong, L. C.; Tu, S. J. Chin. J. Org. Chem. 2010, 30, 1405(in Chinese). (庄启亚, 付永春, 唐丹, 查云赟, 荣良策, 屠树江, 有机化学, 2010, 30, 1405.)
[52] Darras, F. H.; Pockes, S.; Huang, G. Z.; Wehle, S.; Strasser, A.; Wittmann, H. J.; Nimczick, M.; Sotriffer, C. A.; Decker, M. ACS Chem. Neurosci. 2014, 5, 225.
[53] Huang, G. Z.; Roos, D.; Stadtmüller, P.; Decker, M. Tetrahedron Lett. 2014, 55, 3607.
[54] Rezaei, N.; Sheikhi, E.; Ranjbar, P. R. Synlett 2018, 29, 912.
[55] Azimi, S. B.; Azizian, J. Tetrahedron Lett. 2016, 57, 181.
[56] Bunce, R. A.; Nammalwar, B. J. Heterocycl. Chem. 2011, 48, 991.
[57] Shi, D. Q.; Rong, L. C.; Wang, J. X.; Zhuang, Q. Y.; Wang, X. D.; Hu, H. W. Tetrahedron Lett. 2003, 44, 3199.
[58] Cai, G. P.; Xu, X. L.; Li, Z. F.; Weber, W. P.; Lu, P. J. Heterocycl. Chem. 2002, 39, 1271.
[59] Su, W. K.; Yang, B. B. Aust. J. Chem. 2002, 55, 695.
[60] Yoo, C. L.; Fettinger, J. C.; Kurth, M. J. J. Org. Chem. 2005, 70, 6941.
[61] Su, W. K.; Yang, B. B. J. Chem. Res., Synop. 2002, 604.
[62] Upadhyaya, K.; Thakur, R. K.; Shukla, S. K.; Tripathi, R. P. J. Org. Chem. 2016, 81, 5046.
[63] Liu, Z. B.; Zeng, L. Y.; Li, Chao.; Yang, F. B.; Qiu, F. S.; Liu, S. W.; Xi, B. M. Molecules 2018, 23, 2325.
[64] Unsworth, W. P.; Kitsiou, C.; Taylor, R. J. K. Org. Lett. 2013, 15, 258.
[65] Kitsiou, C.; Unsworth, W. P.; Coulthard, G.; Taylor, R. J. K. Tetrahedron 2014, 70, 7172.
[66] Wu, X. F.; Oschatz, S.; Block, A.; Spannenberg, A.; Langer, P. Org. Biomol. Chem. 2014, 12, 1865.
[67] Borase, P. N.; Thale, P. B.; Shankarling, G. S. RSC Adv. 2016, 6, 63078.
[68] Safaei, H. R.; Shekouhy, M.; Ghorbanzadeh, S. ChemistrySelect 2018, 3, 4750.
[69] Zhen, B.; Jiao, Q. Z.; Zhang, Y. P.; Wu, Q.; Li, H. S.; Shi, D. X.; Li, J. R. Catal. Commun. 2013, 32, 1.
[70] Chai, H. X.; Li, J. R.; Yang, L. P.; Liu, M. X.; Yang, D. L.; Zhang, Q.; Shi, D. X. Chin. J. Chem. 2014, 32, 865.
[71] Tamaddon, F.; Pouramini, F. Synlett 2014, 25, 1127.
[72] Zhang, L. J.; Yu, J. L.; Wang, W. L.; Li, H.; Xu, D. D.; Bi, Y. D.; Liu, F. D. Tetrahedron Lett. 2014, 55, 710.
[73] Kundu, P.; Mondal, M.; Chowdhury, C. J. Org. Chem. 2016, 81, 6596.
[74] Zhang, X. P.; Li, Z. W.; Ding, Q. Q.; Li, X. C.; Fan, X. S.; Zhang, G. S. Adv. Synth. Catal. 2019, 361, 976.

Outlines

/