Chinese Journal of Organic Chemistry >
A New Dicyano-vinyl Modified Difurylperhydrocyclopentene Photoswitch: Fluorescent Properties, Sensing Ability and in vivo Application
Received date: 2019-03-17
Revised date: 2019-04-22
Online published: 2019-05-06
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21406137, 61502297), the Natural Science Foundation of Shanghai City (No. 17ZR1447100), and the Science and Technology Commission of Shanghai Municipality (No. 14DZ2261000).
Recently, fluorescent labeling techniques have been greatly developed with the aid of highly optimized small-molecule fluorescent dyes, fluorescent proteins and advanced tagging techniques. Many reasonable strategies have been used to design fluorescent diarylethene, mainly focusing on the introduction of luminophores by conjugated junction and the modification of aryl cores in the diarylethene. Compared to thiophene, furan has superior properties such as solubility, biodegradable ability and rigidity fluorescence. Therefore, difurylethene is a better candidate for fluorescent labeling techniques. Herein, a new fluorescent photoswitch based on dicyano-vinyl modified difurylethenes was designed and prepared. This compound demonstrates typical reversible photochromism in solution and outstanding performance for the fluorescent detection of cyanide ions with excellent selectivity, sensitivity and high contrast. Furthermore, the mechanism of sensing toward cyanide ions was explained by 1H NMR titrations experiments. Owing to the strong fluorescence from a superior derivation with furan instead of thiophene, it is successfully applied as the fluorescent dyes and probe for detecting cyanide ions in vivo application.
Key words: difurylperhydrocyclopentene; photoswitch; fluorescent detection; cyanide; bioimaging
Zheng Tianjiao , Chen Xuanying , Zhu Liangliang , Wang Daolei , Zou Qi , Zeng Tao , Chen Wenbo . A New Dicyano-vinyl Modified Difurylperhydrocyclopentene Photoswitch: Fluorescent Properties, Sensing Ability and in vivo Application[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2492 -2498 . DOI: 10.6023/cjoc201903033
[1] Grimm, J. B.; English, B. P.; Choi, H.; Muthusamy, A. K.; Mehl, B. P.; Dong, P.; Brown, T. A.; Lippincott-Schwartz, J.; Liu, Z.; Lionnet, T.; Lavis, L. D. Nat. Methods 2016, 13, 985.
[2] Zhao, F.; Chen, Z.; Fan, C. B.; Liu, G.; Pu, S. Z. Dyes Pigm. 2019, 164, 390.
[3] Yin, Y.; Zhao, F.; Chen, Z.; Liu, G.; Pu, S. Z. Tetrahedron Lett. 2018, 59, 4416.
[4] Tang, A. L.; Chen, Z.; Liu, G.; Pu, S. Z. Tetrahedron Lett. 2018, 59, 3600.
[5] Ju, Z. Y.; Shu, P. H.; Xie, Z. Y.; Jiang, Y. Q.; Tao, W. J.; Xu, Z. H. Chin. J. Org. Chem. 2019, 39, 697(in Chinese). (鞠志宇, 舒朋华, 谢智宇, 蒋雨晴, 陶伟杰, 许志红, 有机化学, 2019, 39, 697.)
[6] Jiao, C. P.; Liu, Y. Y.; Lu, W. J.; Zhang, P. P.; Wang, Y. F. Chin. J. Org. Chem. 2019, 39, 591(in Chinese). (矫春鹏, 刘媛媛, 路文娟, 张平平, 王延风, 有机化学, 2019, 39, 591.)
[7] Li, Y. J.; Zhang, N.; Liu, J. H.; Jin, K.; Wang, S. Y. Chin. J. Org. Chem. 2018, 38, 3026(in Chinese). (李英俊, 张楠, 刘季红, 靳焜, 王思远, 有机化学, 2018, 38, 3026.)
[8] Heim, R. Nature 1995, 373, 663.
[9] Dean, K. M.; Palmer, A. E. Nat. Chem. Biol. 2014, 10, 512.
[10] Xiong, Y.; Jentzsch, A. V.; Osterrieth, J. W. M.; Sezgin, E.; Sazanovich, I. V.; Reqlinski, K.; Galiani, S.; Parker, A. W.; Eggeling, C.; Anderson, H. L. Chem. Sci. 2018, 9, 3029.
[11] Eggeling, C.; Willig, K. I.; Sahl, S. J.; Hell, S. W. Q. Rev. Biophys. 2015, 48, 178.
[12] Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Science 2006, 313, 1642.
[13] Irie, M. Chem. Rev. 2000, 100, 1685.
[14] Fukaminato, T. J. Photochem. Photobiol. C 2011, 12, 177.
[15] Chen, S.; Chen, L. J.; Yang, H. B.; Tian, H.; Zhu, W. J. Am. Chem. Soc. 2012, 134, 13596.
[16] Pu, S. Z.; Sun, Q.; Fan, C. B.; Wang, R. J.; Liu, G. J. Mater. Chem. C. 2016, 4, 3075.
[17] Cui, S. Q.; Qiu, S. Y.; Lu, R. M.; Pu, S. Z. Tetrahedron Lett. 2018, 59, 3365.
[18] Yun, C.; You, J.; Kim, J.; Huh, J.; Kim, E. J. Photochem. Photobiol. C 2009, 10, 111.
[19] Park, H.; Jin, Y. J.; Kwak, G. Dyes Pigm. 2017, 146, 398.
[20] Ritchie, C.; Vamvounis, G.; Soleimaninejad, H.; Smith, T. A.; Bieske, E. J.; Dryza, V. Phys. Chem. Chem. Phys. 2017, 19, 19984.
[21] Uno, K.; Niikura, H.; Morimoto, M.; Ishibashi, Y.; Miyasaka, H.; Irie, M. J. Am. Chem. Soc. 2011, 133, 13558.
[22] Roubinet, B.; Weber, M.; Shojaei, H.; Bates, M.; Bossi, M. L.; Belov, V. N.; Irie, M.; Hell, S. W. J. Am. Chem. Soc. 2017, 139, 6611.
[23] Takagi, Y.; Morimoto, M.; Kashihara, R.; Fujinami, S.; Ito, S.; Miyasaka, H.; Irie, M. Tetrahedron 2017, 73, 4918.
[24] Irie, M.; Mohri, M. J. Org. Chem. 1988, 53, 808.
[25] Deng, X.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 7703.
[26] Yamaguchi, T.; Irie, M. J. Mater. Chem. 2006, 16, 4690.
[27] Sysoiev, D.; Yushchenko, T.; Scheer, E.; Groth, U.; Steiner, U. E.; Exner, T. E.; Huhn, T. Chem. Commun. 2012, 48, 11355.
[28] Sysoiev, D.; Fedoseev, A.; Kim, Y.; Boneberg, J.; Huhn, T.; Leiderer, P.; Scheer, E.; Groth, U.; Steiner, U. E. Chem.-Eur. J. 2011, 17, 6663.
[29] Wolf, J.; Eberspächer, I.; Groth, U.; Huth, T. J. Org. Chem. 2013, 78, 8366.
[30] Gidron, O.; Diskin-Posner, Y.; Bendikov, M. J. Am. Chem. Soc. 2010, 132, 2148.
[31] Gidron, O.; Dadvand, A.; Sheynin, Y.; Bendikov, M.; Perepichka, D. F. Chem. Commun. 2011, 47, 1976.
[32] Gidron, O.; Bendikov, M. Angew. Chem., Int. Ed. 2014, 53, 2546.
[33] Zhao, Z.; Nie, H.; Ge, C.; Cai, Y.; Xiong, Y.; Qi, J.; Wu, W.; Kwok, R. T. K.; Gao, X.; Qin, A.; Lam, J. W. Y.; Tang, B. Z. Adv. Sci. 2017, 4, 1700005.
[34] Gidron, O.; Dadvand, A.; Sun, E. W. H.; Chung, I.; Shimon, L. J. W.; Bendikov, M.; Perepichka, D. F. J. Mater. Chem. C 2013, 1, 4358.
[35] Gidron, O.; Varsano, N.; Shimon, L. J. W.; Leitus, G.; Bendikov, M. Chem. Commun. 2013, 49, 6256.
[36] Binder, J. B.; Raines, R. T. J. Am. Chem. Soc. 2009, 131, 1979.
[37] Wang, S.; Zhou, Y.; Zhu, L.; Zhang, J.; Zou, Q.; Zeng, T.; Chen, W. Chem. Commun. 2017, 53, 9570.
[38] Lucas, L. N.; Jong, J. J. D.; Esch, J. H.; Esch, J. H.; Kellogg, R. M.; Feringa, B. L. Eur. J. Org. Chem. 2003, 155.
[39] Li, W.; Jiao, C.; Li, X.; Xie, K.; Nakatani, K.; Tian, H.; Zhu, W. Angew. Chem., Int. Ed. 2014, 53, 4603.
[40] Pati, P. B.; Zade, S. S. RSC Adv. 2013, 3, 13457.
[41] Zhou, X.; Lv, X.; Hao, J.; Liu, D.; Guo, W. Dyes Pigm. 2012, 95, 168.
[42] Lee, C. H.; Yoon, H. J.; Shim, J. S.; Jiang, W. D. Chem.-Eur. J. 2012, 18, 4513.
[43] Yang, L.; Li, X.; Yang, J.; Qu, Y.; Hua, J. ACS Appl. Mater. Interfaces 2013, 5, 1317.
[44] Zou, Q.; Li, X.; Xu, Q.; Ågren, H.; Zhao, W.; Qu, Y. RSC Adv. 2014, 4, 59809.
/
〈 |
|
〉 |