REVIEW

Advances of “Click” Reaction Approach in Glycopolypeptide Synthesis

  • Wang Zhao ,
  • Hao Lingyun ,
  • Zhang Xiaojuan ,
  • Sheng Ruilong
Expand
  • a School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China;
    b CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal;
    c Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received date: 2019-03-21

  Revised date: 2019-04-19

  Online published: 2019-05-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21372251), the Research Initiation Fund for High-level Talents of Jinling University of Science and Technology (No. jit-b-201828), the Fundação para a Ciência e a Tecnologia (No. PEst-OE/QUI/UI0674/2019), the Reforço do Investimento em Equipamentos e Infraestruturas Científicas na RAM (No. M1420-01-0145-FEDER-000008), and the Sub Topic 2017-ISG-003 of Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (No. M1420-01-0145-FEDER-000005).

Abstract

Synthetic glycopolypeptides, as analogues of natural glycoproteins, are an emerging class of bioinspired polymers with excellent biocompatibility. They can mimic the structure and functions of natural glycoproteins, and show great potential for biological applications, such as biomolecular recognition, drug/gene delivery, cell adhesion and targeting, as well as cell culture and tissue engineering. Nevertheless, the efficient and lab/pilot scale preparation of well-defined and tunable glycopolypeptides with complex polymer structures, has been a challenging field until now. The fast development of "Click" chemistry/reaction offers versatile and powerful tools for the synthesis of glycopolypeptides. The state of arts for the development of new "Click" synthetic strategies and methods in the preparation of glycopolypeptides, mainly including post-polymerization glycosylation of synthetic polypeptides and ring-opening polymerization of glycosylated N-carboxyanhydride (glyco-NCA) is reviewed. The pros and cons of current developments for the synthesis of glycopolypeptide analogues and their future perspectives are also stated and discussed.

Cite this article

Wang Zhao , Hao Lingyun , Zhang Xiaojuan , Sheng Ruilong . Advances of “Click” Reaction Approach in Glycopolypeptide Synthesis[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2379 -2391 . DOI: 10.6023/cjoc201903038

References

[1] Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.
[2] Helenius, A.; Aebi, M. Science 2001, 291, 2364.
[3] Miura, Y. Polym. J. 2012, 44, 679.
[4] Kiessling, L. L.; Grim, J. C. Chem. Soc. Rev. 2013, 42, 4476.
[5] Yilmaz, G.; Becer, C. R. Eur. Polym. J. 2013, 49, 3046.
[6] Pratt, M. R.; Bertozzi, C. R. Chem. Soc. Rev. 2005, 34, 58.
[7] Bonduelle, C.; Lecommandoux, S. Biomacromolecules 2013, 14, 2973.
[8] Krannig, K. S.; Schlaad, H. Soft Matter. 2014, 10, 4228.
[9] Xiao, C. S.; Ding, J. X.; He, C. L.; Chen, X. S. Acta Polym. Sin. 2018, 45(in Chinese). (肖春生, 丁建勋, 贺超良, 陈学思, 高分子学报, 2018, 45.)
[10] Kempe, K.; Krieg, A.; Becer, C. R.; Schubert, U. S. Chem. Soc. Rev. 2012, 41, 176.
[11] Hu, Q.; Li, Y. X.; Wang, J. Y.; Li, Y. Y. Acta Chim. Sinica 2015, 73, 416(in Chinese). (胡齐, 李玉祥, 王静媛, 李亚鹏, 化学学报, 2015, 73, 416.)
[12] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
[13] Wang, Z.; Luo, Z. J.; Li, M. R.; Sheng, R. L.; Luo, T.; Cao, A. M. Acta Polym. Sin. 2016, 667(in Chinese). (王昭, 罗志基, 李明睿, 盛瑞隆, 罗挺, 曹阿民, 高分子学报, 2016, 667.)
[14] Döhler, D.; Michael, P.; Binder, W. H. Acc. Chem. Res. 2017, 50, 2610.
[15] Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Polym. Chem. 2018, 9, 2853.
[16] Qin, A.; Liu, Y.; Tang, B. Z. Macromol. Chem. Phys. 2015, 216, 818.
[17] Such, G. K.; Johnston, A. P. R.; Liang, K.; Caruso, F. Prog. Polym. Sci. 2012, 37, 985.
[18] Hoyle, C. E.; Lowe, A. B.; Bowman, C. N. Chem. Soc. Rev. 2010, 39, 1355.
[19] Hoyle, C. E.; Bowman, C. N. Angew. Chem., Int. Ed. 2010, 49, 1540.
[20] Liu, Q.; Zhang, Q. Y.; Chen, S. J.; Zhou, J.; Lei, X. F. Chin. J. Org. Chem. 2012, 32, 1846(in Chinese). (刘清, 张秋禹, 陈少杰, 周健, 雷星锋, 有机化学, 2012, 32, 1846.)
[21] Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E. J.; Zhong, Z. Biomaterials 2014, 35, 4969.
[22] Sowinska, M.; Urbanczyk-Lipkowska, Z. New J. Chem. 2014, 38, 2168.
[23] Martens, S.; Holloway, J. O.; Du Prez, F. E. Macromol. Rapid Commun. 2017, 38, 1.
[24] Lowe, A. B. Polym. Chem. 2014, 5, 4820.
[25] Li, B.; Huang, D.; Qin, A.; Tang, B. Z. Macromol. Rapid Commun. 2018, 39, 1.
[26] Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Polym. Chem. 2018, 9, 2853.
[27] Huang, Z. H.; Zhou, Y. Y.; Wang, Z. M.; Li, Y.; Zhang, W.; Zhou, N. C.; Zhang, Z. B.; Zhu, X. L. Chin. J. Polym. Sci. 2017, 35, 317.
[28] Tang, W.; Becker, M. L. Chem. Soc. Rev. 2014, 43, 7013.
[29] Tu, X. Y.; Liu, M. Z.; Wei, H. J. Polym. Sci., Part A:Polym. Chem. 2016, 54, 1447.
[30] Zou, W.; Dong, J.; Luo, Y.; Zhao, Q.; Xie, T. Adv. Mater. 2017, 291606100.
[31] Xiong, X. Q.; Yi, C. Sci. Sin. Chim. 2013, 43, 783(in Chinese). (熊兴泉, 易超, 中国科学:化学, 2013, 43, 783.)
[32] Huang, D.; Qin, A. J.; Tang, B. Z. Acta Polym. Sin. 2017, 178(in Chinese). (黄蝶, 秦安军, 唐本忠, 高分子学报, 2017, 178.)
[33] Bonduelle, C.; Lecommandoux, S. Biomacromolecules 2013, 14, 2973.
[34] Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H. A.; Zhong, Z. Prog. Polym. Sci. 2014, 39, 330.
[35] Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Chem. Commun. 2014, 50, 139.
[36] Li, X.; Chen, G. Polym. Chem. 2015, 6, 1417.
[37] Schatz, C.; Louguet, S.; Le Meins, J.-F.; Lecommandoux, S. Angew. Chem., Int. Ed. 2009, 48, 2572.
[38] Huang, J.; Bonduelle, C.; Thévenot, J.; Lecommandoux, S.; Heise, A. J. Am. Chem. Soc. 2012, 134, 119.
[39] Kramer, J. R.; Rodriguez, A. R.; Choe, U.-J.; Kamei, D. T.; Deming, T. J. Soft Matter. 2013, 9, 3389.
[40] Pati, D.; Das, S.; Patil, N. G.; Parekh, N.; Anjum, D. H.; Dhaware, V.; Ambade, A. V.; Sen Gupta, S. Biomacromolecules 2016, 17, 466.
[41] Liu, Y.; Zhang, Y.; Wang, Z.; Wang, J.; Wei, K.; Chen, G.; Jiang, M. J. Am. Chem. Soc. 2016, 138, 12387.
[42] Das, S.; Sharma, D. K.; Chakrabarty, S.; Chowdhury, A.; Sen Gupta, S. Langmuir 2015, 31, 3402.
[43] Pati, D.; Kalva, N.; Das, S.; Kumaraswamy, G.; Sen Gupta, S.; Ambade, A. V. J. Am. Chem. Soc. 2012, 134, 7796.
[44] Stöhr, T.; Blaudszun, A. R.; Steinfeld, U.; Wenz, G. Polym. Chem. 2011, 2, 2239.
[45] Ding, J.; Xiao, C.; Li, Y.; Cheng, Y.; Wang, N.; He, C.; Zhuang, X.; Zhu, X.; Chen, X. J. Control. Release 2013, 169, 193.
[46] Ren, K.; He, C.; Xiao, C.; Li, G.; Chen, X. Biomaterials 2015, 51, 238.
[47] Klink, D. T.; Chao, S.; Glick, M. C.; Scanlin, T. F. Mol. Ther. 2001, 3, 831.
[48] Kramer, J. R.; Schmidt, N. W.; Mayle, K. M.; Kamei, D. T.; Wong, G. C. L.; Deming, T. J. ACS Cent. Sci. 2015, 1, 83.
[49] Jacobs, J.; Byrne, A.; Gathergood, N.; Keyes, T. E.; Heuts, J. P. A.; Heise, A. Macromolecules 2014, 47, 7303.
[50] Kramer, J. R.; Onoa, B.; Bustamante, C.; Bertozzi, C. R. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 12574.
[51] Kramer, J. R.; Deming, T. J. Polym. Chem. 2014, 5, 671.
[52] Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Sakellariou, G. Chem. Rev. 2009, 109, 5528.
[53] Cheng, J.; Deming, T. J. Top. Curr. Chem. 2012, 310, 1.
[54] Brzezinska, K. R.; Deming, T. J. Macromol. Biosci. 2004, 4, 566.
[55] Deming, T. J. Peptide Hybrid Polymers, Berlin, Heidelberg, 2006, pp. 1~18.
[56] Deming, T. J. Nature 1997, 390, 386.
[57] Deming, T. J. J. Am. Chem. Soc. 1998, 120, 4240.
[58] Deming, T. J.; Curtin, S. A. J. Am. Chem. Soc. 2000, 122, 5710.
[59] Deming, T. J. Adv. Drug Delivery Rev. 2002, 54, 1145.
[60] Curtin, S. A.; Deming, T. J. J. Am. Chem. Soc. 1999, 121, 7427.
[61] Rhodes, A. J.; Deming, T. J. J. Am. Chem. Soc. 2012, 134, 19463.
[62] Brzezinska, K. R.; Curtin, S. A.; Deming, T. J. Macromolecules 2002, 35, 2970.
[63] Zhao, L.; Li, N.; Wang, K.; Shi, C.; Zhang, L.; Luan, Y. A Bio-materials 2014, 35, 1284.
[64] Shen, Y.; Fu, X.; Fu, W.; Li, Z. Chem. Soc. Rev. 2015, 44, 612.
[65] Wibowo, S. H.; Sulistio, A.; Wong, E. H. H.; Blencowe, A.; Qiao, G. G. Chem. Commun. 2014, 50, 4971.
[66] Cai, C.; Lin, J.; Lu, Y.; Zhang, Q.; Wang, L. Chem. Soc. Rev. 2016, 45, 5985.
[67] Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Chem. Commun. 2014, 50, 139.
[68] Liarou, E.; Varlas, S.; Skoulas, D.; Tsimblouli, C.; Sereti, E.; Dimas, K.; Iatrou, H. Prog. Polym. Sci. 2018, 83, 28.
[69] Deming, T. J. Chem. Rev. 2016, 116, 786.
[70] Song, Z.; Han, Z.; Lv, S.; Chen, C.; Chen, L.; Yin, L.; Cheng, J. Chem. Soc. Rev. 2017, 46, 6570.
[71] Zhou, X.; Li, Z. Adv. Healthcare Mater. 2018, 7, 1800020.
[72] Wang, M. Z.; Du, J. Z. Acta Polym. Sin. 2014, 1183(in Chinese). (王明智, 杜建忠, 高分子学报, 2014, 1183.)
[73] Tian, Z.; Wang, M.; Zhang, A.; Feng, Z. Polymer 2008, 49, 446.
[74] Zeng, X.; Murata, T.; Kawagishi, H.; Usui, T.; Kobayashi, K. Carbohydr. Res. 1998, 312, 209.
[75] Zeng, X.; Murata, T.; Kawagishi, H.; Usui, T.; Kobayashi, K. Biosci. Biotechnol. Biochem. 1998, 62, 1171.
[76] Kobayashi, K.; Tawada, E.; Akaike, T.; Usui, T. Biochim. Biophys. Acta 1997, 1336, 117.
[77] Mildner, R.; Menzel, H. J. Polym. Sci., Part A:Polym. Chem. 2013, 51, 3925.
[78] Lavilla, C.; Yilmaz, G.; Uzunova, V.; Napier, R.; Becer, C. R.; Heise, A. Biomacromolecules 2017, 18, 1928.
[79] Midoux, P.; Mendes, C.; Legrand, A.; Raimond, J.; Mayer, R.; Monsigny, M.; Roche, A. C. Nucleic Acids Res. 1993, 21, 871.
[80] Wang, R.; Xu, N.; Du, F. S.; Li, Z. C. Chem. Commun. 2010, 46, 3902.
[81] Engler, A. C.; Lee, H.; Hammond, P. T. Angew. Chem., Int. Ed. 2009, 48, 9334.
[82] Xiao, C.; Zhao, C.; He, P.; Tang, Z.; Chen, X.; Jing, X. Macromol. Rapid Commun. 2010, 31, 991.
[83] Ding, J.; Xiao, C.; Li, Y.; Cheng, Y.; Wang, N.; He, C.; Zhuang, X.; Zhu, X.; Chen, X. J. Controlled Release 2013, 169, 193.
[84] Borase, T.; Ninjbadgar, T.; Kapetanakis, A.; Roche, S.; O'Connor, R.; Kerskens, C.; Heise, A.; Brougham, D. F. Angew. Chem., Int. Ed. 2013, 52, 3164.
[85] Kapetanakis, A.; Heise, A. Eur. Polym. J. 2015, 69, 483.
[86] Dhaware, V.; Shaikh, A.; Kar, M.; Hotha, S.; Gupta, S. Langmuir 2013, 29, 5659.
[87] Huang, J.; Habraken, G.; Audouin, F.; Heise, A. Macromolecules 2010, 43, 6050.
[88] Bonduelle, C.; Huang, J.; Ibarboure, E.; Heise, A.; Lecommandoux, S. Chem. Commun. 2012, 48, 8353.
[89] Bonduelle, C.; Huang, J.; Mena-Barragan, T.; Ortiz Mellet, C.; Decroocq, C.; Etame, E.; Heise, A.; Compain, P.; Lecommandoux, S. Chem. Commun. 2014, 50, 3350.
[90] Bonduelle, C.; Oliveira, H.; Gauche, C.; Huang, J.; Heise, A.; Lecommandoux, S. Chem. Commun. 2016, 52, 11251.
[91] Gauche, C.; Lecommandoux, S. Polymer 2016, 107, 474.
[92] Tang, H.; Zhang, D. Biomacromolecules 2010, 11, 1585.
[93] Rhodes, A. J.; Deming, T. J. ACS Macro Lett. 2013, 2, 351.
[94] Yang, H. K.; Bao, J. F.; Mo, L.; Yang, R. M.; Xu, X. D.; Tang, W. J.; Lin, J. T.; Wang, G. H.; Zhang, L. M.; Jiang, X. Q. RSC Adv. 2017, 7, 21093.
[95] Sun, J.; Schlaad, H. Macromolecules 2010, 43, 4445.
[96] Krannig, K. S.; Sun, J.; Schlaad, H. Biomacromolecules 2014, 15, 978.
[97] Krannig, K. S.; Schlaad, H. J. Am. Chem. Soc. 2012, 134, 18542.
[98] Krannig, K. S.; Huang, J.; Heise, A.; Schlaad, H. Polym. Chem. 2013, 4, 3981.
[99] Kramer, J. R.; Deming, T. J. Biomacromolecules 2012, 13, 1719.
[100] Kramer, J. R.; Deming, T. J. Chem. Commun. 2013, 49, 5144.
[101] Rüde, E.; Westphal, O.; Hurwitz, E.; Fuchs, S.; Sela, M. Immunochemistry 1966, 3, 137.
[102] Kramer, J. R.; Deming, T. J. J. Am. Chem. Soc. 2010, 132, 15068.
[103] Kramer, J. R.; Deming, T. J. J. Am. Chem. Soc. 2012, 134, 4112.
[104] Krannig, K. S.; Doriti, A.; Schlaad, H. Macromolecules 2014, 47, 2536.
[105] Wang, R.; Xu, N.; Du, F. S.; Li, Z. C. Acta Polym. Sin. 2013, 774(in Chinese). (王睿, 许宁, 杜福胜, 李子臣, 高分子学报, 2013, 774.)
[106] Wang, S. S.-S.; How, S.-C.; Chen, Y.-D.; Tsai, Y.-H.; Jan, J.-S. J. Mater. Chem. B 2015, 3, 5220.
[107] Upadhyay, K. K.; Le Meins, J.-F.; Misra, A.; Voisin, P.; Bouchaud, V.; Ibarboure, E.; Schatz, C.; Lecommandoux, S. Biomacromolecules 2009, 10, 2802.
[108] Yang, H. K.; Zhang, L. M. Mater. Sci. Eng., C:Mater. Biol. Appl. 2014, 41, 36.
[109] Wang, Z.; Sheng, R.; Luo, T.; Sun, J.; Cao, A. Polym. Chem. 2017, 8, 472.
[110] Upadhyay, K. K.; Bhatt, A. N.; Castro, E.; Mishra, A. K.; Chuttani, K.; Dwarakanath, B. S.; Schatz, C.; Le Meins, J. F.; Misra, A.; Lecommandoux, S. Macromol. Biosci. 2010, 10, 503.
[111] Upadhyay, K. K.; Mishra, A. K.; Chuttani, K.; Kaul, A.; Schatz, C.; Le Meins, J. F.; Misra, A.; Lecommandoux, S. Nanomedicine 2012, 8, 71.
[112] Upadhyay, K. K.; Bhatt, A. N.; Mishra, A. K.; Dwarakanath, B. S.; Jain, S.; Schatz, C.; Le Meins, J.-F.; Farooque, A.; Chandraiah, G.; Jain, A. K.; Misra, A.; Lecommandoux, S. Biomaterials 2010, 31, 2882.
[113] Mohamed Wali, A. R.; Zhou, J.; Ma, S.; He, Y.; Yue, D.; Tang, J. Z.; Gu, Z. Int. J. Pharm. 2017, 525, 191.
[114] Bonduelle, C.; Mazzaferro, S.; Huang, J.; Lambert, O.; Heise, A.; Lecommandoux, S. Faraday Discuss. 2013, 166, 137.
[115] Fu, L.; Sun, C.; Yan, L. ACS Appl. Mater. Interfaces 2015, 7, 2104.
[116] Pranantyo, D.; Xu, L. Q.; Hou, Z.; Kang, E. T.; Chan-Park, M. B. Polym. Chem. 2017, 8, 3364.

Outlines

/