REVIEW

Progress in Annulation Reactions Based on Huisgen Zwitterion

  • Liu Yiyi ,
  • Zhou Rong
Expand
  • a State Grid Hunan Electric Power Corporation Limited Research Institute, Changsha 410007;
    b College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024

Received date: 2019-03-21

  Revised date: 2019-04-20

  Online published: 2019-05-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21502135), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (No. 201802024).

Abstract

The development of highly efficient and selective synthetic methodologies is an important research task in organic chemistry. In recent years, the Huisgen zwitterions, a type of intermediates derived from nucleophilic addition of tertiary phosphine to azodicarboxylates, have shown unique superiority and efficiency in synthesis of azacyclic compounds, and therefore have attracted broad interest from organic chemists. A large number of annulation reactions based on Huisgen zwitterions have been reported. According to the types of electrophiles, the annulation reactions of Husigen zwitterions with carbonyl compounds, electron-deficient alkenes, imines, and other electrophiles are summarized, respectively.

Cite this article

Liu Yiyi , Zhou Rong . Progress in Annulation Reactions Based on Huisgen Zwitterion[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2365 -2378 . DOI: 10.6023/cjoc201903041

References

[1] Cadogan, J. I. G. Organophosphorus Reagents in Organic Synthesis, Academic Press, London, 1979.
[2] (a) Ye, L. -W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140.
(b) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102.
(c) Marinetti, A.; Voituriez, A. Synlett 2010, 174.
(d) Wang, S.; Han, X.; Zhong, F.; Wang, Y.; Lu, Y. Synlett 2011, 2766.
(e) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724.
(f) Fan, Y.-C.; Kwon, O. Chem. Commun. 2013, 49, 11588.
(g) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
(h) Xiao, Y.; Sun, Z.; Guo, H.; Kwon, O. Beilstein J. Org. Chem. 2014, 10, 2089.
(i) Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578.
(j) Xiao, Y.; Guo, H.; Kwon, O. Aldrichim. Acta 2016, 49, 3.
(k) Wang, T.; Han, X.; Zhong, F.; Yao, W.; Lu, Y. Acc. Chem. Res. 2016, 49, 1369.
(l) Zhou, R.; He, Z. Eur. J. Org. Chem. 2016, 1937.
[3] (a) Xu, S.; He, Z. RSC Adv. 2013, 3, 16885.
(b) Xu, S. L.; He, Z. J. Chin. J. Org. Chem. 2014, 34, 2438(in Chinese). (徐四龙, 贺峥杰, 有机化学, 2014, 34, 2438.)
(c) Karanam, P.; Reddy, G. M.; Koppolu, S. R.; Lin, W. Tetrahedron Lett. 2018, 59, 59.
(d) Liu, Y.; Sun, F.; He, Z. Tetrahedron Lett. 2018, 59, 4136.
[4] Quin, L. D. A Guide to Organophosphorus Chemistry, Wiley, New York, 2000, p. 379.
[5] Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
[6] Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. Chem. Rev. 2009, 109, 2551.
[7] Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353.
[8] Appel, R. Angew. Chem., Int. Ed. 1975, 14, 801.
[9] (a) Huisgen, R.; Blaschke, H.; Brunn, E. Tetrahedron Lett. 1966, 7, 405.
(b) Brunn, E.; Huisgen, R. Angew. Chem., Int. Ed. 1969, 8, 513.
(c) Itzstein, M. v.; Jenkins, I. D. Aust. J. Chem. 1983, 36, 557.
(d) Monge, D.; Jensen, K. L.; Marín, I.; Jørgensen, K. A. Org. Lett. 2011, 13, 328.
[10] Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash, N.; Biju, A. T. Acc. Chem. Res. 2006, 39, 520.
[11] Nair, V.; Biju, A. T.; Mathew, S. C.; Babu, B. P. Chem. Asian J. 2008, 3, 810.
[12] Košmrlj, J.; Ko?evar, M.; Polanc, S. Synlett 2009, 2217.
[13] Cookson, R. C.; Locke, J. M. J. Chem. Soc. 1963, 6062.
[14] Kolasa, T.; Miller, M. J. J. Org. Chem.1987, 52, 4978.
[15] Otte, R. D.; Sakata, T.; Guzei, I. A.; Lee, D. Org. Lett. 2005, 7, 495.
[16] (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
(b) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005.
(c) Huang, Y.; Xie, P. Eur. J. Org. Chem. 2013, 6213.
(d) Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659.
(e) Li, W.; Zhang, J. Chem. Soc. Rev. 2016, 45, 1657.
[17] Nair, V.; Biju, A. T.; Vinod, A. U.; Suresh, E. Org. Lett. 2005, 7, 5139.
[18] Dogan, H. N.; Duran, A.; Rollas, S.; Sener, G.; Armutak, Y.; Keyer Uysal, M. Med. Sci. Res. 1998, 26, 755.
[19] Wang, Z.-D.; Dong, N.; Wang, F.; Li, X.; Cheng, J.-P. Tetrahedron Lett. 2013, 54, 5473.
[20] Nair, V.; Mathew, S. C.; Biju, A. T.; Suresh, E. Angew. Chem., Int. Ed. 2007, 46, 2070.
[21] (a) Elguero, J. In Comprehensive Heterocyclic Chemistry, Vol. 5, Eds.:Katritzky, A. R.; Rees, C. W.; Potts, K. T., Pergamon, Ox-ford, 1984, p. 167.
(b) Elguero, J. In Comprehensive Heterocyclic Chemistry Ⅱ, Vol. 3, Eds.:Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Pergamon, Oxford, 1996, p. 1.
[22] (a) BraLa, M. F.; Cacho, M.; GarcMa, M. L.; Mayoral, E. P.; LNpez, B.; Pascual-Teresa, B.; Ramos, A.; Acero, N.; Llinares, F.; MuLozMingarro, D.; Lozach, O.; Meijer, L. J. Med. Chem. 2005, 48, 6843.
(b) Witherington, J.; Bordas, V.; Haigh, D.; Hickey, D. M. B.; Ife, R. J.; Rawlings, A. D.; Slingsby, B. P.; Smith, D. G.; Ward, R. W. Bioorg. Med. Chem. Lett. 2003, 13, 1581.
(c) Tewari, A. K.; Mishra, A. Bioorg. Med. Chem. 2001, 9, 715.
[23] Liu, W.; Khedkar, V.; Baskar, B.; Schürmann, M.; Kumar, K. Angew. Chem., Int. Ed. 2011, 50, 6900.
[24] Baskar, B.; Wittstein, K.; Sankar, M. G.; Khedkar, V.; Schürmann, M.; Kumar, K. Org. Lett. 2012, 14, 5924.
[25] Papafilippou, A.; Terzidis, M. A.; S.-S.Julia.; Tsoleridis, C. A. Tetrahedron Lett. 2011, 52, 1306.
[26] (a) McCleverty, J. A.; Meyer, T. J. Comprehensive Coordination Chemistry Ⅱ, Elsevier Ltd, Boston, 2003.
(b) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
(c) Börner, A. Phosphorus Ligands in Asymmetric Catalysis, Wiley-VCH, Weinheim, Germany, 2008.
(d) Zhou, Q.-L. Privileged Chiral Ligands and Catalysts, Wiley-VCH, Weinheim, Germany, 2011.
(e) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906.
[27] Nair, V.; Biju, A. T.; Mohanan, K.; Suresh, E. Org. Lett. 2006, 8, 2213.
[28] Chakravarty, M.; Kumar, N. N. B; Sajna, K. V.; Swamy, K. C. K. Eur. J. Org. Chem. 2008, 4500.
[29] Lü, R.; Cheng, X.; Zheng, X.; Ma, S. Chem. Commun. 2014, 50, 1537.
[30] (a) Kazmo, Y.; Akira, M.; Norihiko, M.; Toshiio, M.; Kazutaka, A. Shigera, I. Pestic. Sci. 1999, 55, 161.
(b) Gursoy, A.; Demirayak, M. S.; Çapan, G.; Erol, K.; Vural, K. Eur. J. Med. Chem. 2000, 35, 359.
(c) Badawey, E. A. M.; El-Ashmawey, I. M. Eur. J. Med. Chem. 1998, 33, 349.
[31] Yamazaki, S.; Maenaka, Y.; Fujinami, K.; Mikata, Y. RSC Adv. 2012, 2, 8095.
[32] Yang, C.; Li J.; Zhou, R.; Chen, X.; Gao, Y.; He, Z. Org. Biomol. Chem. 2015, 13, 4869.
[33] Yang, C.; Chen, X.; Tang, T.; He, Z. Org. Lett. 2016, 18, 1486.
[34] Li, Y.; Zhang, H.; Wei, R.; Miao, Z. Adv. Synth. Catal. 2017, 359, 4158.
[35] Lian, Z.; Guan, X.-Y.; Shi, M. Tetrahedron 2011, 67, 2018.
[36] Sankar, M. G.; Garcia-Castro, M.; Wang, Y.; Kumar, K. Asian J. Org. Chem. 2013, 2, 646.
[37] Alizadeh, A. Helv. Chim. Acta 2005, 88, 2777.
[38] Cui, S.-L.; Wang, J.; Wang, Y.-G. Org. Lett. 2008, 10, 13.
[39] Sun, Y.; Jiang, Z.; Hong, D.; Lu, P.; Wang, Y.; Lin, X. Tetrahedron 2010, 66, 2427.
[40] Zhang, W.; Zhu, Y.; Wei, D.; Tang, M. J. Comput. Chem. 2012, 33, 715.
[41] Saha, J.; Lorenc, C.; Surana, B.; Peczuh, M. W. J. Org. Chem. 2012, 77, 3846.
[42] Yang, C.; Liu, W.; He, Z.; He, Z. Org. Lett. 2016, 18, 4936.

Outlines

/