Chinese Journal of Organic Chemistry >
Research Progress of Molecular Alkaline-Earth Metal Hydrides
Received date: 2019-03-21
Revised date: 2019-04-23
Online published: 2019-05-06
Supported by
Project supported by the National Natural Science Foundation of China (No. 21672202) and the "Hundred Talent Program" of Chinese Academy of Sciences.
Alkaline-earth metals continue to receive growing interest, as they are used as low-cost and non-toxic alternatives to transition-metals in various organic transformations. As ionic character and bond lengths increase along the row in the order Mg2+2+2+2+, bond energies decrease along the same row, the corresponding metal hydrides are apt to the formation of insoluble metal hydrides[AeH2]∞ (Ae=Mg, Ca, Sr, Ba) through Schlenk equilibrium in solution. Recently, a series of alkaline-earth metal hydrides stabilized by suitable ligands were discovered and characterized, and stoichiometric and catalytic reactions with small molecules were studied as well. In this paper, the recent progress in molecular alkaline-earth metal hydrides is reviewed.
Key words: alkaline-earth metals; metal hydride; reactivity; research progress
Shi Xianghui , Liu Zhizhou , Cheng Jianhua . Research Progress of Molecular Alkaline-Earth Metal Hydrides[J]. Chinese Journal of Organic Chemistry, 2019 , 39(6) : 1557 -1567 . DOI: 10.6023/cjoc201903043
[1] (a) Naglav, D.; Buchner, M. R.; Bendt, G.; Kraus, F.; Schulz, S. Angew. Chem., Int. Ed. 2016, 55, 10562.
(b) Perera, L. C.; Raymond, O.; Henderson, W.; Brothers, P. J.; Plieger, P. G. Coord. Chem. Rev. 2017, 352, 264.
[2] Shannon, R. D. Acta Crystallogr. A 1976, 32, 751.
[3] Schlenk, W.; Schlenk, W. Jr. Ber. Dtsch. Chem. Ges. B 1929, 62, 920.
[4] (a) Gallagher, D. J.; Henderson, K. W.; Kennedy, A. R.; O'Hara, C. T.; Mulvey, R. E.; Rowlings, R. B. Chem. Commun. 2002, 376.
(b) Andrikopoulos, P. C.; Armstrong, D. R.; Kennedy, A. R.; Mulvey, R. E.; O'Hara, C. T.; Rowlings, R. B. Eur. J. Inorg. Chem. 2003, 3354.
[5] Mukherjee, D.; Okuda, J. Angew. Chem., Int. Ed. 2018, 57, 1458.
[6] Arrowsmith, M.; Hill, M. S.; MacDougall, D. J.; Mahon, M. F. Angew. Chem., Int. Ed. 2009, 48, 4013.
[7] Lemmerz, L. E.; Mukherjee, D.; Spaniol, T. P.; Wong, A.; Ménard, G.; Maron, L.; Okuda, J. Chem. Commun. 2019, 55, 3199.
[8] (a) Green, S. P.; Jones, C.; Stasch, A. Angew. Chem., Int. Ed. 2008, 47, 9079.
(b) Spielmann, J.; Piesik, D. F. J.; Harder, S. Chem. Eur. J. 2010, 16, 8307.
(c) Lalrempuia, R.; Kefalidis, C. E.; Bonyhady, S. J.; Schwarze, B.; Maron, L.; Stasch, A.; Jones, C. J. Am. Chem. Soc. 2015, 137, 8944.
[9] (a) Hill, M. S.; Liptrot, D. J.; Weetman, C. Chem. Soc. Rev. 2016, 45, 972.
(b) Li, Y. Y; Cheng, Y. H.; Shan, C. H.; Zhang, J.; Xu, D. D.; Bai, R. P.; Qu, L. B.; Lan, Y. Chin. J. Org. Chem. 2018, 38, 1885 (in Chinese).(李园园, 程玉华, 单春晖, 张敬, 徐冬冬, 白若鹏, 屈凌波, 蓝宇, 有机化学, 2018, 38, 1885.)
[10] Anker, M. D.; Hill, M. S.; Lowe, J. P.; Mahon, M. F. Angew. Chem., Int. Ed. 2015, 54, 10009.
[11] (a) Bonyhady, S. J.; Jones, C.; Nembenna, S.; Stasch, A.; Edwards, A. J.; McIntyre, G. J. Chem. Eur. J. 2010, 16, 938.
(b) Arrowsmith, M.; Maitland, B.; Kociok-Kohn, G.; Stasch, A.; Jones, C.; Hill, M. S. Inorg. Chem. 2014, 53, 10543.
(c) Lalrempuia, R.; Stasch, A.; Jones, C. Chem. Asian J. 2015, 10, 447.
(d) Schnitzler, S.; Spaniol, T. P.; Maron, L.; Okuda, J. Chem. Eur. J. 2015, 21, 11330.
(e) Xie, H.; Hua X.; Liu, B.; Wu C.; Cui, D. J. Organomet. Chem. 2015, 798, 335.
(f) Rauch, M.; Ruccolo, S.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 13264.
[12] Rauch, M.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 18162.
[13] (a) Langer, J.; Maitland, B.; Grams, S.; Ciucka, A.; Pahl, J.; Elsen, H.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 5021.
(b) Martin, D.; Beckerle, K.; Schnitzler, S.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2015, 54, 4115.
[14] Harder, S.; Brettar, J. Angew. Chem., Int. Ed. 2006, 45, 3474.
[15] (a) Spielmann, J.; Harder, S. Chem. Eur. J. 2007, 13, 8928.
(b)Harder, S. Chem. Commun. 2012, 48, 11165.
[16] Spielmann, J.; Buch, F.; Harder, S. Angew. Chem., Int. Ed. 2008, 47, 9434.
[17] Intemann, J.; Bauer, H.; Pahl, J.; Maron, L.; Harder, S. Chem.-Eur. J. 2015, 21, 11452.
[18] Anker, M. D.; Kefalidis, C. E.; Yang, Y.; Fang, J.; Hill, M. S.; Mahon, M. F.; Maron, L. J. Am. Chem. Soc. 2017, 139, 10036.
[19] Wilson, A. S. S.; Hill, M. S.; Mahon, M. F.; Dinoi, C.; Maron, L. Science 2017, 358, 1168.
[20] Wu, X.; Zhao, L.; Jin, J.; Pan, S.; Li, W.; Jin, X.; Wang, G.; Zhou, M.; Frenking, G. Science 2018, 361,912.
[21] Wilson, A. S. S.; Dinoi, C.; Hill, M. S.; Mahon, M. F.; Maron, L. Angew. Chem., Int. Ed. 2018, 57, 15500.
[22] (a) Causero, A.; Ballmann, G.; Pahl, J.; Zijlstra, H.; Farber, C.; Harder, S. Organometallics 2016, 35, 3350.
(b) Causero, A.; Elsen, H.; Pahl, J.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 6906.
(c) Bauer, H.; Alonso, M.; Färber, C.; Elsen, H.; Pahl, J.; Causero, A.; Ballmann, G.; Proft, F. D.; Harder, S. Nat. Cat. 2018, 1, 40.
[23] (a) Jochmann, P.; Davin, J. P.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2012, 51, 4452.
(b) Leich, V.; Spaniol, T. P.; Okuda, J. Inorg. Chem. 2015, 54, 4927.
(c) Leich, V.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2016, 55, 4794.
(d) Schuhknecht, D.; Lhotzky, C.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2017, 56, 12367.
[24] Maitland, B.; Wiesinger, M.; Langer, J.; Ballmann, G.; Pahl, J.; Elsen, H.; Farber, C.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 11880.
[25] De Bruin-Dickason, C. N.; Sutcliffe, T.; Lamsfus, C. A.; Deacon, G. B.; Maron, L.; Jones, C. Chem. Commun., 2018, 54, 786.
[26] Mukherjee, D.; Höllerhage, T.; Leich, V.; Spaniol, T. P.; Englert, U.; Maron, L.; Okuda, J. J. Am. Chem. Soc. 2018, 140, 3403.
[27] Rösch, B.; Gentner, T. X.; Elsen, H.; Fischer, C. A.; Langer, J.; Wiesinger, M.; Harder, S. Angew. Chem., Int. Ed. 2019, 58, 5396.
[28] Shi, X.; Hou, C.; Zhou, C.; Song, Y.; Cheng, J. Angew. Chem., Int. Ed. 2017, 56, 16650.
[29] Wiesinger, M.; Maitland, B.; Farber, C.; Ballmann, G.; Fischer, C.; Elsen, H.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 16654.
[30] Shi, X.; Qin, G.; Wang, Y.; Zhao, L.; Liu, Z.; Cheng, J. Angew. Chem., Int. Ed. 2019, 58. 4356.
/
〈 |
|
〉 |