Reviews

Research Progress of Molecular Alkaline-Earth Metal Hydrides

  • Shi Xianghui ,
  • Liu Zhizhou ,
  • Cheng Jianhua
Expand
  • a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022;
    b College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029

Received date: 2019-03-21

  Revised date: 2019-04-23

  Online published: 2019-05-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21672202) and the "Hundred Talent Program" of Chinese Academy of Sciences.

Abstract

Alkaline-earth metals continue to receive growing interest, as they are used as low-cost and non-toxic alternatives to transition-metals in various organic transformations. As ionic character and bond lengths increase along the row in the order Mg2+2+2+2+, bond energies decrease along the same row, the corresponding metal hydrides are apt to the formation of insoluble metal hydrides[AeH2] (Ae=Mg, Ca, Sr, Ba) through Schlenk equilibrium in solution. Recently, a series of alkaline-earth metal hydrides stabilized by suitable ligands were discovered and characterized, and stoichiometric and catalytic reactions with small molecules were studied as well. In this paper, the recent progress in molecular alkaline-earth metal hydrides is reviewed.

Cite this article

Shi Xianghui , Liu Zhizhou , Cheng Jianhua . Research Progress of Molecular Alkaline-Earth Metal Hydrides[J]. Chinese Journal of Organic Chemistry, 2019 , 39(6) : 1557 -1567 . DOI: 10.6023/cjoc201903043

References

[1] (a) Naglav, D.; Buchner, M. R.; Bendt, G.; Kraus, F.; Schulz, S. Angew. Chem., Int. Ed. 2016, 55, 10562.
(b) Perera, L. C.; Raymond, O.; Henderson, W.; Brothers, P. J.; Plieger, P. G. Coord. Chem. Rev. 2017, 352, 264.
[2] Shannon, R. D. Acta Crystallogr. A 1976, 32, 751.
[3] Schlenk, W.; Schlenk, W. Jr. Ber. Dtsch. Chem. Ges. B 1929, 62, 920.
[4] (a) Gallagher, D. J.; Henderson, K. W.; Kennedy, A. R.; O'Hara, C. T.; Mulvey, R. E.; Rowlings, R. B. Chem. Commun. 2002, 376.
(b) Andrikopoulos, P. C.; Armstrong, D. R.; Kennedy, A. R.; Mulvey, R. E.; O'Hara, C. T.; Rowlings, R. B. Eur. J. Inorg. Chem. 2003, 3354.
[5] Mukherjee, D.; Okuda, J. Angew. Chem., Int. Ed. 2018, 57, 1458.
[6] Arrowsmith, M.; Hill, M. S.; MacDougall, D. J.; Mahon, M. F. Angew. Chem., Int. Ed. 2009, 48, 4013.
[7] Lemmerz, L. E.; Mukherjee, D.; Spaniol, T. P.; Wong, A.; Ménard, G.; Maron, L.; Okuda, J. Chem. Commun. 2019, 55, 3199.
[8] (a) Green, S. P.; Jones, C.; Stasch, A. Angew. Chem., Int. Ed. 2008, 47, 9079.
(b) Spielmann, J.; Piesik, D. F. J.; Harder, S. Chem. Eur. J. 2010, 16, 8307.
(c) Lalrempuia, R.; Kefalidis, C. E.; Bonyhady, S. J.; Schwarze, B.; Maron, L.; Stasch, A.; Jones, C. J. Am. Chem. Soc. 2015, 137, 8944.
[9] (a) Hill, M. S.; Liptrot, D. J.; Weetman, C. Chem. Soc. Rev. 2016, 45, 972.
(b) Li, Y. Y; Cheng, Y. H.; Shan, C. H.; Zhang, J.; Xu, D. D.; Bai, R. P.; Qu, L. B.; Lan, Y. Chin. J. Org. Chem. 2018, 38, 1885 (in Chinese).(李园园, 程玉华, 单春晖, 张敬, 徐冬冬, 白若鹏, 屈凌波, 蓝宇, 有机化学, 2018, 38, 1885.)
[10] Anker, M. D.; Hill, M. S.; Lowe, J. P.; Mahon, M. F. Angew. Chem., Int. Ed. 2015, 54, 10009.
[11] (a) Bonyhady, S. J.; Jones, C.; Nembenna, S.; Stasch, A.; Edwards, A. J.; McIntyre, G. J. Chem. Eur. J. 2010, 16, 938.
(b) Arrowsmith, M.; Maitland, B.; Kociok-Kohn, G.; Stasch, A.; Jones, C.; Hill, M. S. Inorg. Chem. 2014, 53, 10543.
(c) Lalrempuia, R.; Stasch, A.; Jones, C. Chem. Asian J. 2015, 10, 447.
(d) Schnitzler, S.; Spaniol, T. P.; Maron, L.; Okuda, J. Chem. Eur. J. 2015, 21, 11330.
(e) Xie, H.; Hua X.; Liu, B.; Wu C.; Cui, D. J. Organomet. Chem. 2015, 798, 335.
(f) Rauch, M.; Ruccolo, S.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 13264.
[12] Rauch, M.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 18162.
[13] (a) Langer, J.; Maitland, B.; Grams, S.; Ciucka, A.; Pahl, J.; Elsen, H.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 5021.
(b) Martin, D.; Beckerle, K.; Schnitzler, S.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2015, 54, 4115.
[14] Harder, S.; Brettar, J. Angew. Chem., Int. Ed. 2006, 45, 3474.
[15] (a) Spielmann, J.; Harder, S. Chem. Eur. J. 2007, 13, 8928.
(b)Harder, S. Chem. Commun. 2012, 48, 11165.
[16] Spielmann, J.; Buch, F.; Harder, S. Angew. Chem., Int. Ed. 2008, 47, 9434.
[17] Intemann, J.; Bauer, H.; Pahl, J.; Maron, L.; Harder, S. Chem.-Eur. J. 2015, 21, 11452.
[18] Anker, M. D.; Kefalidis, C. E.; Yang, Y.; Fang, J.; Hill, M. S.; Mahon, M. F.; Maron, L. J. Am. Chem. Soc. 2017, 139, 10036.
[19] Wilson, A. S. S.; Hill, M. S.; Mahon, M. F.; Dinoi, C.; Maron, L. Science 2017, 358, 1168.
[20] Wu, X.; Zhao, L.; Jin, J.; Pan, S.; Li, W.; Jin, X.; Wang, G.; Zhou, M.; Frenking, G. Science 2018, 361,912.
[21] Wilson, A. S. S.; Dinoi, C.; Hill, M. S.; Mahon, M. F.; Maron, L. Angew. Chem., Int. Ed. 2018, 57, 15500.
[22] (a) Causero, A.; Ballmann, G.; Pahl, J.; Zijlstra, H.; Farber, C.; Harder, S. Organometallics 2016, 35, 3350.
(b) Causero, A.; Elsen, H.; Pahl, J.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 6906.
(c) Bauer, H.; Alonso, M.; Färber, C.; Elsen, H.; Pahl, J.; Causero, A.; Ballmann, G.; Proft, F. D.; Harder, S. Nat. Cat. 2018, 1, 40.
[23] (a) Jochmann, P.; Davin, J. P.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2012, 51, 4452.
(b) Leich, V.; Spaniol, T. P.; Okuda, J. Inorg. Chem. 2015, 54, 4927.
(c) Leich, V.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2016, 55, 4794.
(d) Schuhknecht, D.; Lhotzky, C.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2017, 56, 12367.
[24] Maitland, B.; Wiesinger, M.; Langer, J.; Ballmann, G.; Pahl, J.; Elsen, H.; Farber, C.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 11880.
[25] De Bruin-Dickason, C. N.; Sutcliffe, T.; Lamsfus, C. A.; Deacon, G. B.; Maron, L.; Jones, C. Chem. Commun., 2018, 54, 786.
[26] Mukherjee, D.; Höllerhage, T.; Leich, V.; Spaniol, T. P.; Englert, U.; Maron, L.; Okuda, J. J. Am. Chem. Soc. 2018, 140, 3403.
[27] Rösch, B.; Gentner, T. X.; Elsen, H.; Fischer, C. A.; Langer, J.; Wiesinger, M.; Harder, S. Angew. Chem., Int. Ed. 2019, 58, 5396.
[28] Shi, X.; Hou, C.; Zhou, C.; Song, Y.; Cheng, J. Angew. Chem., Int. Ed. 2017, 56, 16650.
[29] Wiesinger, M.; Maitland, B.; Farber, C.; Ballmann, G.; Fischer, C.; Elsen, H.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 16654.
[30] Shi, X.; Qin, G.; Wang, Y.; Zhao, L.; Liu, Z.; Cheng, J. Angew. Chem., Int. Ed. 2019, 58. 4356.

Outlines

/