Chinese Journal of Organic Chemistry >
Recent Advances in Asymmetric Hydroformylation
Received date: 2019-03-22
Revised date: 2019-04-23
Online published: 2019-05-06
Supported by
Project supported by the National Natural Science Foundation of China (No. 21871212) and the Natural Science Foundation of Hubei Province (No. 2018CFB430).
Asymmetric hydroformylation is one of the most important reactions for preparation of chiral aldehydes from alkenes. Recently, significant progress has been made in this field and a series of new ligands have been developed. Asymmetric hydroformylation of several important alkenes has been achieved, offering efficient and concise methods for the synthesis of chiral aldehydes. In this review, the achievements of asymmetric hydroformylation of typical alkenes and the development of ligands for asymmetric hydroformylation are summarized.
Key words: alkene; asymmetric hydroformylation; aldehyde; chiral phosphine ligand; rhodium
Li Shuailong, Li Zhuangxing, You Cai, Lü Hui, Zhang Xumu . Recent Advances in Asymmetric Hydroformylation[J]. Chinese Journal of Organic Chemistry, 2019 , 39(6) : 1568 -1582 . DOI: 10.6023/cjoc201903044
[1] (a) Claver, C.; van Leeuwen, P. W. N. M. Rhodium Catalyzed Hydroformylation, Kluwer Academic Publishers, Dordrecht, 2002.
(b) Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675.
(c) Su, K.; Jiang, H.; Zhu, D.; Fu, H.; Zheng, X.; Yuan, M.; Li, R.; Chen, H. Acta Chim. Sinica 2013, 71, 844 (in Chinese).(苏珂, 蒋红斌, 朱德明, 付海燕, 郑学丽, 袁茂林, 李瑞祥, 陈华, 化学学报, 2013, 71, 844.)
(d) Jia, X.; Wang, Z.; Xia, C.; Ding, K. Chin. J. Org. Chem. 2013, 33, 1369 (in Chinese).(贾肖飞, 王正, 夏春谷, 丁奎岭, 有机化学, 2013, 33, 1369.)
[2] Naqvi, S. Oxo Alcohols. Process Economics Program Report 21E, SRI Consulting, Menlo Park, CA, 2010.
[3] Botteghi, C.; Consiglio, G.; Pino, P. Chimia 1972, 26, 141.
[4] (a) Ogata, I.; Ikeda, Y. Chem. Lett. 1972, 487.
(b) Tanaka, M.; Watanabe, Y.; Mitsudo, T.-A.; Yamamoto, K.; Takeeami, Y. Chem. Lett. 1972, 483.
[5] Salomon, C.; Consiglio, G.; Botteghi, C.; Pino, P. Chimia 1973, 27, 215.
[6] (a) Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, 7033.
(b) Nozaki, K.; Nanno, T.; Takaya, H. J. Organomet. Chem. 1997, 527, 103.
(c) Lambers-Verstappen, M. M. H.; de Vries, J. G. Adv. Synth. Catal. 2003, 345, 478.
(d) Tanaka, R.; Nakano, K.; Nozaki, K. J. Org. Chem. 2007, 72, 8671.
[7] (a) Yan, Y.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 7198.
(b) Zhang, X.; Cao, B.; Yan, Y.; Yu, S.; Ji, B. M.; Zhang, X. Chem.-Eur. J. 2010, 16, 871.
(c) Zhang, X.; Cao, B.; Yu, S.; Zhang, X. Angew. Chem., Int. Ed. 2010, 49, 4047.
(d) Wei, B.; Chen, C.; You, C.; Lv, H.; Zhang, X. Org. Chem. Front. 2017, 4, 288.
[8] (a) Noonan, G. M.; Fuentes, J. A.; Cobley, C. J.; Clarke, M. L. Angew. Chem., Int. Ed. 2012, 51, 2477.
(b) Noonan, G. M.; Cobley, C. J.; Mahoney, T.; Clarke, M. L. Chem. Commun. 2014, 50, 1475.
[9] (a) Babin, J. E.; Whiteker, G. T. US 5360938, 1993 [Chem. Abstr. 1995, 122, 186609].
(b) Buisman, G. J. H.; Vos, E. J.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M. J. Chem. Soc., Dalton Trans. 1995, 409.
[10] (a) Cobley, C. J.; Klosin, J.; Qin, C.; Whiteker, G. T. Org. Lett. 2004, 6, 3277.
(b) Cobley, C. J.; Gardner, K.; Klosin, J.; Praquin, C.; Hill, C.; Whiteker, G. T.; Zanotti-Gerosa, A. J. Org. Chem. 2004, 69, 4031.
[11] (a) Clark, T. P.; Landis, C. R.; Freed, S. L.; Klosin, J.; Abboud, K. A. J. Am. Chem. Soc. 2005, 127, 5040.
(b) Watkins, A. L.; Landis, C. R. J. Am. Chem. Soc. 2010, 132, 10306.
(c) Adint, T. T.; Landis, C. R. J. Am. Chem. Soc. 2014, 136, 7943.
[12] Axtell, A. T.; Cobley, C. J.; Klosin, J.; Whiteker, G. T.; ZanottiGerosa, A.; Abboud, K. A. Angew. Chem., Int. Ed. 2005, 44, 4.
[13] Xu, K.; Zheng, X.; Wang, Z.; Zhang, X. Chem.-Eur. J. 2014, 20, 4357.
[14] Hua, Z.; Vassar, V. C.; Choi, H.; Ojima, I. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5411.
[15] (a) Kuil, M.; Goudriaan, P. E.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. Commun. 2006, 4679.
(b) Bellini, R.; Reek, J. N. H. Chem.-Eur. J. 2012, 18, 13510.
[16] Breit, B.; Breuninger, D. J. Am. Chem. Soc. 2004, 126, 10244.
[17] Worthy, A. D.; Joe, C. L.; Lightburn, T. E.; Tan, K. L. J. Am. Chem. Soc. 2010, 132, 14757.
[18] (a) Zhao, B.; Peng, X.; Wang, Z.; Xia, C.; Ding, K. Chem.-Eur. J. 2008, 14, 7847.
(b) Peng, X.; Wang, Z.; Xia, C.; Ding, K. Tetrahedron Lett. 2008, 49, 4862.
[19] Jouffroy, M.; Gramage-Doria, R.; Armspach, D.; Sémeril, D.; Oberhauser, W.; Matt, D.; Toupet, L. Angew. Chem., Int. Ed. 2014, 53, 3937.
[20] Thomas, P. J.; Axtell, A. T.; Klosin, J.; Peng, W.; Rand, C. L.; Clark, T. P.; Landis, C. R.; Abboud, K. A. Org. Lett. 2007, 9, 2665.
[21] Tan, R. C.; Zheng, X.; Qu, B.; Sarer, C. A.; Fandrick, K. R.; Senanayake, C. H.; Zhang, X. M. Org. Lett. 2016, 18, 3346.
[22] Schmitz, C.; Holthusen, K.; Leitner, W.; Franció, G. ACS Catal. 2016, 6, 1584.
[23] Breeden, S.; Cole-Hamilton, D. J.; Foster, D. F.; Schwarz, G. J.; Wills, M. Angew. Chem., Int. Ed. 2000, 39, 4106.
[24] Zhang, X.; Cao, B.; Yu, S.; Zhang, X. Angew. Chem., Int. Ed. 2010, 49, 4047.
[25] Yu, Z.; Eno, M. S.; Annis, A. H.; Morken, J. P. Org. Lett. 2015, 17, 3264.
[26] Dingwall, P.; Fuentes, J. A.; Crawford, L.; Slawin, A. M. Z.; Bühl, M.; Clarke, M. L. J. Am. Chem. Soc. 2017, 139, 15921.
[27] Iu, L.; Fuentes, J. A.; Janka, M. E.; Fontenot, K. J.; Clarke, M. L. Angew. Chem., Int. Ed. 2019, 58, 2120.
[28] Horiuchi, T.; Ohta, T.; Shirakawa. E.; Nozaki, K.; Takaya, H. J. Org. Chem. 1997, 62, 4285.
[29] (a) Diéguez, M.; Pamies, O.; Claver, C. Chem. Commun. 2005, 1221.
(b) Gual, A.; Godard, C.; Castillón, S.; Claver, C. Adv. Synth. Catal. 2010, 352, 463.
[30] (a) Chikkali, S. H.; Bellini, R.; Berthon-Gelloz, G.; van der Vlugt, J. I.; de Bruin, B.; Reek, J. N. H. Chem. Commun. 2010, 46, 1244.
(b) Chikkali, S. H.; Bellini, R.; de Bruin, B.; van der Vlugt, J. I.; Reek, J. N. H. J. Am. Chem. Soc. 2012, 134, 6607.
[31] Rovira, L.; Vaquero, M.; Vidal-Ferran, A. J. Org. Chem. 2015, 80, 10397.
[32] Watkins, A. L.; Hashiguchi, B. G.; Landis, C. R. Org. Lett. 2008, 10, 4553.
[33] Fuentes, J. A.; Pittaway, R.; Clarke, M. L. Chem.-Eur. J. 2015, 21, 10645.
[34] Sherill, W. M.; Rubin, M. J. Am. Chem. Soc. 2008, 130, 13804.
[35] You, C.; Wei, B.; Li, X.; Yang, Y.; Liu, Y.; Lv, H.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 6511.
[36] Sakai, N.; Nozaki, K.; Takaya, H. J. Chem. Soc., Chem. Commun. 1994, 395.
[37] (a) McDonald, R. I.; Wong, G. W.; Neupane, R. P.; Stahl, S. S.; Landis, C. R. J. Am. Chem. Soc. 2010, 132, 14027.
(b) Abrams, M. L.; Foarta, F.; Landis, C. R. J. Am. Chem. Soc. 2014, 136, 14583.
[38] Clemens, A. J. L.; Burke, S. D. J. Org. Chem. 2012, 77, 2983.
[39] (a) Worthy, A. M.; Joe, C. L.; Lightburn, T. E.; Tan, K. L. J. Am. Chem. Soc. 2010, 132, 14757.
(b) Joe, C. L.; Blaisdell, T. P.; Geoghan, A. F.; Tan, K. L. J. Am. Chem. Soc. 2014, 136, 8556.
[40] Gadzikwa, T.; Bellini, R.; Dekker, H. L.; Reek, J. N. H. J. Am. Chem. Soc. 2012, 134, 2860.
[41] You, C.; Li, X.; Yang, Y.; Yang, Y.-S.; Tan, X.; Li, S.; Wei, B.; Lv, H.; Chung, L.-W.; Zhang, X. Nat. Commun. 2018, 9, 2045.
[42] Deng, Y.; Wang, H.; Sun, Y.; Wang, X. ACS Catal. 2015, 5, 6828.
[43] Kollár, L.; Bakos, J.; Tóth, I.; Heil, B. J. Organomet. Chem. 1988, 350, 277.
[44] Consiglio, G.; Roncetti, L. Chirality 1991, 3, 341.
[45] Ojima, I.; Takai, M.; Takahashi, T. WO 078766, 2004 [Chem. Abstr. 2004, 141, 260889].
[46] You, C.; Li, S.; Li, X.; Lan, J.; Yang, Y.; Chung, L.-W.; Lv, H.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 4977.
[47] Wang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 19080.
[48] Zheng, X.; Cao, B.; Liu, T.; Zhang, X. Adv. Synth. Catal. 2013, 355, 679.
[49] Gladiali, S.; Pinna, L. Tetrahedron:Asymmetry 1990, 1, 693.
[50] Lee, C. W.; Alper, H. J. Org. Chem. 1995, 60, 499.
[51] Wang, X.; Buchwald, S. L. J. Org. Chem. 2013, 78, 3429.
[52] Fanfoni, L.; Diab, L.; Smejkal, T.; Breit, B. Chimia 2014, 68, 371.
[53] Eshon, J.; Foarta, F.; Landis, C. R.; Schomaker, J. M. J. Org. Chem. 2018, 83, 10207.
/
〈 |
|
〉 |