Articles

1,4-Functionalization of 3-En-1-ynes with Alcohols via Zinc-Catalyzed Regioselective N-Oxide Oxidation

  • Zheng Renhua ,
  • Guo Haichang ,
  • Yang Mingyang ,
  • Liu Mengqi ,
  • Ye Longwu
Expand
  • a School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000;
    b College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005

Received date: 2019-03-25

  Revised date: 2019-04-24

  Online published: 2019-05-06

Supported by

Project supported by the Zhejiang Provincal Public Welfare Technology Research Program (No. LGG19B040001), the Taizhou Science and Technology Project (No. 1801gy21), the National Natural Science Foundation of China (Nos. 21572186, 21622204) and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT).

Abstract

γ-Hydroxyl or γ-alkoxyl-substituted α,β-unsaturated carbonyls widely exist in a variety of natural products and bioactive molecules. Herein, the realization of 1,4-functionalization of 3-en-1-ynes with alcohols through zinc-catalyzed regioselective N-oxide oxidation is described. This tandem reaction allows the practical synthesis of a range of valuable γ-alkoxyl-substituted-α,β-unsaturated amides in moderate to good yields.

Cite this article

Zheng Renhua , Guo Haichang , Yang Mingyang , Liu Mengqi , Ye Longwu . 1,4-Functionalization of 3-En-1-ynes with Alcohols via Zinc-Catalyzed Regioselective N-Oxide Oxidation[J]. Chinese Journal of Organic Chemistry, 2019 , 39(6) : 1672 -1680 . DOI: 10.6023/cjoc201903054

References

[1] For selected examples, see:(a) Heravi, M. M.; Zadsirjan, V.; Esfandyari, M.; Lashaki, T. B. Tetrahedron:Asymmetry 2017, 28, 987.
(b) Takayasu, Y.; Ogura, Y.; Towada, R.; Kuwahara, S. Biosci. Biotechnol. Biochem. 2016, 80, 1459.
(c) Srinivas, C.; Kumar, P.; China, R. B.; Jayathirtha, R. V.; Naidu, V.; Ramakrishna, S.; Diwan, P. V. Bioorg. Med. Chem. Lett. 2009, 19, 5915.
(d) Nakamura, H.; Ono, M.; Yamada, T.; Numata, A.; Akita, H. Chem. Pharm. Bull. 2002, 50, 303.
[2] For selected examples, see:(a) Nidhiry, J. E.; Prasad, K. R. Synlett 2014, 25, 2585.
(b) Son, S.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 2756.
(c) Cooksey, J. P.; Kocienski, P. J.; Li, Y.; Schunk, S.; Snaddon, T. N. Org. Biomol. Chem. 2006, 4, 3325.
[3] For selected examples, see:(a) Sutar, R. L.; Sen, S.; Eivgi. O.; Segalovich, G.; Schapiro, I.; Reany, O.; Lemcoff, N. G. Chem. Sci. 2018, 9, 1368.
(b) Ziegler, D. T.; Fu, G. C. J. Am. Chem. Soc. 2016, 138, 12069.
(c) Ammann, S. E.; Liu, W.; White, M. C. Angew. Chem., Int. Ed. 2016, 55, 9571.
(d) Kikuchi, H.; Hoshikawa, T.; Kurata, S.; Katou, Y.; Oshima, Y. J. Nat. Prod. 2016, 79, 1259.
(e) Xu, M.; Ren, T.-T.; Li, C.-Y. Org. Lett. 2012, 14, 4902.
(f) Sugiura, M.; Yagi, Y.; Wei, S.-Y.; Nakai, T. Tetrahedron Lett. 1998, 39, 4351.
(g) Brooks, P. B.; Marson, C. M. Tetrahedron 1998, 54, 9613.
(h) Tiecco, M.; Testaferri, L.; Tingoli, M.; Bagnoli, L.; Santi, C. J. Chem. Soc., Chem. Commun. 1993, 637.
[4] Jadhav, A. H.; Gawade, S. A.; Vasu, D.; Dateer, R. B.; Liu, R.-S. Chem. Eur. J. 2014, 20, 1813.
[5] For recent reviews on ynamide reactivity, see:(a) Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Org. Biomol. Chem. 2017, 15, 8483.
(b) Pan, F.; Shu, C.; Ye, L.-W. Org. Biomol. Chem. 2016, 14, 9456.
(c) Evano, G.; Theunissen, C.; Lecomte, M. Aldrichim. Acta 2015, 48, 59.
(d) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
(e) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
(f) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840.
[6] For selected examples from our group, see:(a) Li, L.; Zhu, X.-Q.; Zhang, Y.-Q.; Bu, H.-Z.; Yuan, P.; Chen, J.; Su, J.; Deng, X.; Ye, L.-W. Chem. Sci. 2019, 10, 3213.
(b) Zhou, B.; Li, L.; Zhu, X.-Q.; Yan, J.-Z.; Guo, Y.-L.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 4015.
(c) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 605.
(d) Li, L.; Chen, X.-M.; Wang, Z.-S.; Zhou, B.; Liu, X.; Lu, X.; Ye, L.-W. ACS Catal. 2017, 7, 4004.
(e) Zhou, B.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Sci. Bull. 2017, 62, 1201.
(f) Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 3254.
(g) Pan, Y.; Chen, G.-W.; Shen, C.-H.; He, W.; Ye, L.-W. Org. Chem. Front. 2016, 3, 491.
(h) Shu, C.; Wang, Y.-H.; Zhou, B.; Li, X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. J. Am. Chem. Soc. 2015, 137, 9567.
(i) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265.
(j) Li, L.; Shu, C.; Zhou, B.; Yu, Y.-F.; Xiao, X.-Y.; Ye, L.-W. Chem. Sci. 2014, 5, 4057.
[7] For reviews on catalytic intermolecular N-oxide oxidation of alkynes, see:(a) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448.
(b) Zhou, B.; Li, L.; Ye, L.-W. Synlett 2016, 493.
(c) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.
(d) Zhang, L. Acc. Chem. Res. 2014, 47, 877.
(e) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226
[8] For recent representative examples, see:(a) Cai, J.; Wang, X.; Qian, Y.; Qiu, L.; Hu, W.; Xu, X. Org. Lett. 2019, 21, 369.
(b) Wei, H.; Bao, M.; Dong, K.; Qiu, L.; Wu, B.; Hu, W.; Xu, X. Angew. Chem., Int. Ed. 2018, 57, 17200.
(c) Yang, J.-M.; Zhao, Y.-T.; Li, Z.-Q.; Gu, X.-S.; Zhu, S.-F.; Zhou, Q.-L. ACS Catal. 2018, 8, 7351.
(d) Zhang, Y.-Q.; Zhu, X.-Q.; Chen, Y.-B.; Tan, T.-D.; Yang, M.-Y.; Ye, L.-W. Org. Lett. 2018, 20, 7721.
(e) Zhao, J.; Xu, W.; Xie, X.; Sun, N.; Li, X.; Liu, Y. Org. Lett. 2018, 20, 5461.
(f) Li, J.; Xing, H.-W.; Yang, F.; Chen, Z.-S.; Ji, K. Org. Lett. 2018, 20, 4622.
(g) Hamada, N.; Yamaguchi, A.; Inuki, S.; Oishi, S.; Ohno, H. Org. Lett. 2018, 20, 4401.
(h) Lin, M.; Zhu, L.; Xia, J.; Yu, Y.; Chen, J.; Mao, Z.; Huang, X. Adv. Synth. Catal. 2018, 360, 2280.
(i) Xu, Z.; Chen, H.; Wang, Z.; Ying, A.; Zhang, L. J. Am. Chem. Soc. 2016, 138, 5515.
(j) Zeng, X.; Liu, S.; Shi, Z.; Liu, G.; Xu, B. Angew. Chem., Int. Ed. 2016, 55, 10032.
(k) Zhang, Y.; Xue, Y.; Li, G.; Yuan, H.; Luo, T. Chem. Sci. 2016, 7, 5530.
(l) Wang, Y.; Zheng, Z.; Zhang, L. J. Am. Chem. Soc. 2015, 137, 5316.
(m) Chen, H.; Zhang, L. Angew. Chem., Int. Ed. 2015, 54, 11775.
(n) Ji, K.; Zheng, Z.; Wang, Z.; Zhang, L. Angew. Chem., Int. Ed. 2015, 54, 1245.
(o) Chen, M.; Chen, Y.; Sun, N.; Zhao, J.; Liu, Y.; Li, Y. Angew. Chem., Int. Ed. 2015, 54, 1200.
(p) Zheng, Z.; Zhang, L. Org. Chem. Front. 2015, 2, 1556.
(q) Ji, K.; Liu, X.; Du, B.; Yang, F.; Gao, J. Chem. Commun. 2015, 51, 10318.
(r) Li, L.; Zhou, B.; Ye, L.-W. Chin. J. Org. Chem. 2015, 35, 655 (in Chinese).(李龙, 周波, 叶龙武, 有机化学, 2015, 35, 655.)
(s) Pan, F.; Liu, S.; Shu, C.; Lin, R.-K.; Yu, Y.-F.; Zhou, J.-M.; Ye, L.-W. Chem. Commun. 2014, 50, 10726.
(t) Shu, C.; Li, L.; Xiao, X.-Y.; Yu, Y.-F.; Ping, Y.-F.; Zhou, J.-M.; Ye, L.-W. Chem. Commun. 2014, 50, 8689.
[9] For examples on the ynamide oxidation by non-noble metal catalysis from our group, see:(a) Zhu, J.; Ren, X.; Tang, F.; Pan, F.; Ye, L.-W. Chin. J. Org. Chem. 2019, 39, 1102 (in Chinese).(朱建荣, 任小娟, 唐飞宇, 潘飞, 叶龙武, 有机化学, 2019, 39, 1102.)
(b) Zhu, B.-H.; Wang, C.-M.; Su, H.-Y.; Ye, L.-W. Chin. J. Chem. 2019, 37, 58.
(c) Wang, C.-M.; Qi, L.-J.; Sun, Q.; Zhou, B.; Zhang, Z.-X.; Shi, Z.-F.; Lin, S.-C.; Lu, X.; Gong, L.; Ye, L.-W. Green Chem. 2018, 20, 3271.
(d) Shen, W.-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Nat. Commun. 2017, 8, 1748.
(e) Pan, F.; Li, X.-L.; Chen, X.-M.; Shu, C.; Ruan, P.-P.; Shen, C.-H.; Lu, X.; Ye, L.-W. ACS Catal. 2016, 6, 6055.
f) Ruan, P.-P.; Shen, C.-H.; Li, L.; Liu, C.-Y.; Ye, L.-W. Org. Chem. Front. 2016, 3, 989.
(g) Li, L.; Zhou, B.; Wang, Y.-H.; Shu, C.; Pan, Y.-F.; Lu, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2015, 54, 8245.
[10] Wang, G.; Huang, Z.; Negishi, E.-I. Org. Lett. 2008, 10, 3223.

Outlines

/