Reviews

Enantioselective Synthesis of Atropisomers Featuring Pentatomic Heteroaromatics

  • Zhang Shuo ,
  • Liao Gang ,
  • Shi Bingfeng
Expand
  • Department of Chemistry, Zhejiang University, Hangzhou 310027

Received date: 2019-04-11

  Revised date: 2019-05-06

  Online published: 2019-05-10

Supported by

Project supported by the National Basic Research Program of China (No. 2015CB856600), the National Natural Science Foundation of China (Nos. 21772170, 21572201), the Fundamental Research Funds for the Central Universities (No. 2018XZZX001-02), the Natural Science Foundation of Zhejiang Province (No. LR17B020001) and the China Postdoctoral Science Foundation (No. 2019M650135).

Abstract

Axially chiral biaryl skeletons are ubiquitous stuctural motifs that are widely represented in pharmaceuticals and natural products, and have been widely used as privileged chiral ligands/catalysts in asymmetric synthesis. Therefore, the asymmetric construction of these compounds has received tremendous attention. However, the established strategies are mainly limited to the construction of biaryls containing hexatomic aromatics, and the approaches towards atropisomers featuring pentatomic heteroaromatics connected through C-C or C-N bond have emerged gradually only until recently. The main hurdle is basically due to the increased distance of substituents ortho to the axis, which is responsible for lower barriers to rotation, thus rendering the asymmetric synthesis more challenging. This review summarizes recent advances on the enantioselective synthesis of atropisomers featuring pentatomic heteroaromatics.

Cite this article

Zhang Shuo , Liao Gang , Shi Bingfeng . Enantioselective Synthesis of Atropisomers Featuring Pentatomic Heteroaromatics[J]. Chinese Journal of Organic Chemistry, 2019 , 39(6) : 1522 -1528 . DOI: 10.6023/cjoc201904030

References

[1] (a) Smyth, J. E.; Butler, N. M.; Keller, P. A. Nat. Prod. Rep. 2015, 32, 1562.
(b) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563.
(c) LaPlante, S. R.; Fader, L. D.; Fandrick, K. R.; Fandrick, D. R.; Hucke, O.; Kemper, R.; Miller, S. P. F.; Edwards, P. J. J. Med. Chem. 2011, 54, 7005.
(d) Clayden, J.; Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew. Chem., Int. Ed. 2009, 48, 6398.
(e) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193;
[2] (a) Min, C.; Seidel, D. Chem. Soc. Rev. 2017, 46, 5889.
(b) Fu, W.; Tang, W. ACS Catal. 2016, 6, 4814.
(c) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277.
(d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.
(e) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156.
(f) Zhou, Q.-L. Privileged Chiral Ligands and Catalysts, Wiley-VCH, Weinheim, Germany, 2011.
(g) Brunel, J. M. Chem. Rev. 2007, 107, PR1.
(h) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.
(i) Xu, L.-W.; Xia, C.-G.; Sun, W.; Li, F.-W.; Wang, H.-W. Chin. J. Org. Chem. 2003, 23, 919 (in Chinese).(徐利文, 夏春谷, 孙伟, 李福伟, 王红旺, 有机化学, 2003, 23, 919.)
(j) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
(k) Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994.
[3] (a) Baudoin, O. Eur. J. Org. Chem. 2005, 4223.
(b) Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384.
(c) Wallace, T. W. Org. Biomol. Chem. 2006, 4, 3197.
(d) Bringmann, G.; Menche, D. Acc. Chem. Res. 2011, 34, 615.
(e) Wencel-Delord, J.; Panossian, A; Leroux, F. R.; Colobert, F. Chem. Soc. Rev. 2015, 44, 3418.
(f) Ma, G.; Sibi, M. P. Chem.-Eur. J. 2015, 21, 11644.
(g) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Chem. Rev. 2015, 115, 11239.
(h) Loxq, P.; Manoury, E.; Poli, R.; Deydier, E.; Labande, A. Coord. Chem. Rev. 2016, 308, 131.
(i) Mori, K.; Itakura, T.; Akiyama, T. Angew. Chem., Int. Ed. 2016, 55, 11642.
(j) Xu, C.; Zheng, H.; Hu, B.; Liu, X.; Liu, L.; Feng, X. Chem. Commun. 2017, 53, 9741.
(k) Zilate, B.; Castrogiovanni, A.; Sparr, C. ACS Catal. 2018, 8, 2981.
(l) Link, A.; Sparr, C. Chem. Soc. Rev. 2018, 47, 3804.
(m) Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.
[4] (a) Bonne, D.; Rodriguez, J. Eur. J. Org. Chem. 2018, 2417.
(b) Bonne, D.; Rodriguez, J. Chem. Commun. 2017, 53, 12385.
[5] (a) Alkorta, I.; Elguero, J.; Roussel, C.; Vanthuyne, N.; Piras, P. Adv. Heterocycl. Chem. 2012, 105, 1.
(b) Djafri, A.; Roussel, C.; Sandström, J. J. Chem. Soc., Perkin Trans. 2 1985, 273.
(c) Lomas, J. C.; Lacroix, J.-C.; Vaisser-mann, J. J. Chem. Soc., Perkin Trans. 2 1999, 2001.
(d) Benincori, T.; Brenna, E.; Sannicolo, F.; Trimarco, L.; Antognazza, P.; Cesarotti, E. J. Chem. Soc., Chem. Commun. 1995, 685.
[6] Oki, M. Top. Stereochem. 1983, 14, 1.
[7] Norton, R. S.; R. Wells, J. J. Am. Chem. Soc. 1982, 104, 3628.
[8] Ito, C.; Thoyama, Y.; Omura, M.; Kjiura, I.; Furukawa, H. Chem. Pharm. Bull. 1993, 41, 2096
[9] (a) Hughes, C. C.; Pietro-Davo, A.; Jensen, P. R.; Fenical, W. Org. Lett. 2008, 10, 629.
(b) Schneider, P.; Schneider, G. Chem. Commun. 2017, 53, 2272.
(c) Cheng, C.; Pan, L.; Chen, Y.; Song, H.; Qin, Y.; Li, R. J. Comb. Chem. 2010, 12, 541.
(d) Kanakis, A. A.; Sarli, V. Org. Lett. 2010, 12, 4872.
[10] (a) Urban, S.; Hobbs, L.; Hooper, J. N. A.; Capon, R. J. Aust. J. Chem. 1995, 48, 1491.
(b) De Silva, K. T.; Ratcliffe, A. H.; Smith, G. F.; Smith, G. N. Tetrahedron Lett. 1972, 13, 913.
[11] Schneiderab, P.; Schneider, G. Chem. Commun. 2017, 53, 2272.
[12] (a) Benincori, T.; Brenna, E.; Sannicolò, F.; Trimarco, L.; Antognazza, P.; Cesarotti, E. J. Chem. Soc., Chem. Commun. 1995, 685.
(b) Benincori, T.; Brenna, E.; Sannicolò, F.; Trimarco, L.; Antognazza, P.; Cesarotti, E.; Demartin, F.; Pilati, T. J. Org. Chem. 1996, 61, 6244.
(c) Benincori, T.; Cesarotti, E.; Piccolo, O.; Sannicolò, F. J. Org. Chem. 2000, 65, 2043.
(d) Andersen, N.; Parvez, M.; Keay, B. A. Org. Lett. 2000, 2, 2817.
[13] (a) Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem. Sci. 2012, 3, 2165.
(b) Yamaguchi, K.; Kondo, H.; Yamaguchi, J.; Itami, K. Chem. Sci. 2013, 4, 3753.
[14] Zhang, H.-H.; Wang, C.-S.; Li, C.; Mei, G.-J.; Li, Y.; Shi, F. Angew. Chem., Int. Ed. 2017, 56, 116.
[15] Ma, C.; Jiang, F.; Sheng, F.-T.; Jiao, Y.; Mei, G.-J.; Shi, F. Angew. Chem. Int. Ed. 2019, 58, 3014.
[16] Zhang, L.; Zhang, J.; Ma, J.; Cheng, D.-J.; Tan, B. J. Am. Chem. Soc. 2017, 139, 1714.
[17] Raut, V. S.; Jean, M.; Vanthuyne, N.; Roussel, C.; Constantieux, T.; Bressy, C.; Bugaut, X.; Bonne, D.; Rodriguez, J. J. Am. Chem. Soc. 2017, 139, 2140.
[18] Wang, D.; Tong, X. Org. Lett. 2017, 19, 6392.
[19] Link, A.; Sparr, C. Angew. Chem. Int. Ed. 2018, 57, 7136.
[20] Qi, L.-W.; Mao, J.-H.; Zhang, J.; Tan, B. Nat. Chem. 2018, 10, 58.
[21] He, C.; Hou, M.; Zhu, Z.; Gu, Z. ACS Catal. 2017, 7, 5316.
[22] (a) Ototake, N.; Morimoto, Y.; Mokuya, A.; Fukaya, H.; Shida, Y.; Kitagawa, O. Chem.-Eur. J. 2010, 16, 6752.
(b) Peng, C.; Kusakabe, T.; Kikkawa, S.; Mochida, T.; Azumaya, I.; DaulatDhage, Y.; Takahashi, K.; Sasai, H.; Kato, K. Chem.-Eur. J. 2019, 25, 733.
[23] Zhang, S.; Yao, Q.-J.; Liao, G.; Li, X.; Li, H.; Chen, H.-M.; Hong, X.; Shi, B.-F. ACS Catal. 2019, 9, 1956.
[24] Li, T.-R.; Zhang, M.-M.; Wang, B.-C.; Lu, L.-Q.; Xiao, W.-J. Org. Lett. 2018, 20, 3237.
[25] Zheng, S.-C.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2019, 58, 1494.
[26] (a) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.
(b) Park, H.; Verma, P.; Hong, K.; Yu, J.-Q. Nat. Chem. 2018, 10, 755.
[27] (a) Sun, H.; Guimond, N.; Huang, Y. Org. Biomol. Chem. 2016, 14, 8389.
(b) Kim, D.-S.; Park, W.-J.; Jun, C.-H. Chem. Rev. 2017, 117, 8977.
(c) Gandeepan, P.; Ackermann, L. Chem 2018, 4, 199.
(d) Bhattacharya, T.; Pimparkar, S.; Maiti, D. RSC Adv. 2018, 8, 19456.
(e) Gong, L.-Z. Acta Chim. Sinica 2018, 76, 817 (in Chinese).(龚流柱, 化学学报, 2018, 76, 817.)
(f) Zhang, M.-M.; Luo, Y.-Y.; Lu, L.-Q.; Xiao, W.-J. Acta Chim. Sinica 2018, 76, 838 (in Chinese).(张毛毛, 骆元元, 陆良秋, 肖文精, 化学学报, 2018, 76, 838.)
[28] (a) Yao, Q.-J.; Zhang, S.; Zhan, B.-B.; Shi, B.-F. Angew. Chem., Int. Ed. 2017, 56, 6617.
(b) Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D.-Y.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 3661.
(c) Liao, G.; Li, B.; Chen, H.-M.; Yao, Q.-J.; Xia, Y.-N.; Luo, J.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 17151.
[29] He, X.-L.; Zhao, H.-R.; Song, X.; Jiang, B.; Du, W.; Chen, Y.-C. ACS Catal. 2019, 9, 4374.

Outlines

/