ARTICLE

Synthesis of Benzyl Phenol from Benzyl Aryl Ether by Polyphosphoric Acid-Catalyzed Benzyl Rearrangement

  • Liu Zhuyun ,
  • Xu Juanjuan ,
  • Ling Bin ,
  • Li Yanxiang ,
  • Liu Guangcong ,
  • Wang Lizhong ,
  • Zhou Guochun
Expand
  • a School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816;
    b School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300

Received date: 2019-01-26

  Revised date: 2019-04-30

  Online published: 2019-05-15

Supported by

Project supported by the Natural Science Research General Project of Jiangsu Higher Education Institutions (Nos. 18KJD350002, 17KJB350012), the Excellent Young Backbone Teachers of "Blue Project" in Jiangsu Universities in 2018, the College Students' Innovation and Entrepreneurship Training Program in Jiangsu Province in 2018 (No. 201812106004Y), the Science and Technology Support Program of Taizhou (No. TS201711), the Doctoral and Master's Fund of Taizhou Polytechnic College (No. TZYBS-17-1) and the Research Project of Taizhou Polytechnic College (No. TZYKY-18-28).

Abstract

The rearrangement activity of benzyl aryl ether catalyzed by polyphosphoric acid (PPA) was systematically investigated. Optimal structural tuning of substitutions of electron withdrawing group (EWG) and electron donating group (EDG) at phenolic moiety or benzyl moiety benefits the rearrangement and the regio-selectivity of the rearrangement obeyed the substitution directing rule at the aromatic ring. This readily available rearrangement method is of practical interest for the benzylation of diverse aromatic phenols.

Cite this article

Liu Zhuyun , Xu Juanjuan , Ling Bin , Li Yanxiang , Liu Guangcong , Wang Lizhong , Zhou Guochun . Synthesis of Benzyl Phenol from Benzyl Aryl Ether by Polyphosphoric Acid-Catalyzed Benzyl Rearrangement[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2515 -2524 . DOI: 10.6023/cjoc201901042

References

[1] Tyman, J. H. P. Synthetic and Natural Phenols, Elsevier, New York, 1996.
[2] Representive examples:(a) Olah, G. A. Friedel-Crafts and Related Reactions, Wiley, New York, 1963.
(b) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem. Int. Ed. 2004, 43, 550.
(c) Guo, X.-K.; Zhao, D.-Y.; Li, J.-H.; Zhang, X.-G.; Deng, C.-L.; Tang, R.-Y. Synlett 2012, 23, 627.
[3] Representive examples:(a) Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160.
(b) Verrier, C.; Hoarau, C.; Marsais, F. Org. Biomol. Chem. 2009, 7, 647.
(c) Ackermann, L.; Novák, P. Org. Lett. 2009, 11, 4966.
(d) Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J. J. Am. Chem. Soc. 2003, 125, 2020.
(e) Zhang, C. Y.; Gao, X. Q.; Zhang, J. H.; Peng, X. J. Chin. Chem. Lett. 2009, 20, 913.
[4] Hartmann, C.; Gattermann, L. Ber. Dtsch. Chem. Ges. 1892, 25, 3531.
[5] Tarbell, D. S.; Petropoulos, J. C. J. Am. Chem. Soc. 1952, 74, 244.
[6] (a) Luzzio, F. A.; Chen, J. J. Org. Chem. 2009, 74, 5629.
(b) Kraus, G. A. Chaudhary, D. Tetrahedron Lett. 2012, 53, 7072.
(c) Yoshimi, Y.; Maeda, H. Hatanaka, M.; Mizuno, K. Tetrahedron 2004, 60, 9425.
(d) Sagrera, G.; Seoane, G. Synthesis 2009, 4190.
[7] Schäfer; G.; Bode, J. W. Angew. Chem., Int. Ed. 2011, 50, 10913.
[8] Champagne; P. A.; Benhassine, Y.; Desroches, J.; Paquin, J.-F. Angew. Chem., Int. Ed. 2014, 53, 13835.
[9] Vukovi?, V. D.; Richmond, E.; Wolf, E.; Moran, J. Angew. Chem., Int. Ed. 2017, 56, 3085.
[10] Bering, L.; Jeyakumar, K.; Antonchick, A. P. Org. Lett. 2018, 20, 3911.
[11] (a) Kuwano, R.; Kusano, H. Org. Lett. 2008, 10, 1979.
(b) Zhou, L.; Wang, W.; Zuo, L.; Yao, S.; Wang, W.; Duan, W. Tetrahedron Lett. 2008, 49, 4876.
[12] (a) Prokipcak, J. M.; Breckles, T. H. Can. J. Chem. 1971, 49, 914.
(b) Moghaddam, F. M.; Hoor, A. A.; Dekamin, M. G. J. Sulfur Chem. 2004, 25, 125.
(c) Leeson, P. D.; Emmett, J. C.; Underwood, A. H.; Ellis, D. EP 188351, 1986.
[13] (a) Niu, J.; Zhou, H.; Li, Z.; Xu, J.; Hu, S. J. Org. Chem. 2008, 73, 7814.
(b) Bhure, M. H.; Rode, C. V.; Chikate, R. C.; Patwardhan, N.; Patil, S. Catal. Commun. 2007, 8, 139.
[14] (a) Dai, H.-L.; Liu, W.-Q.; Xu, H.; Yang, L.-M.; Lv, M.; Zheng, Y. T. Chem. Pharm. Bull. 2009, 57, 84.
(b) Bartoli, G.; Dalpozzo, R.; Nino, A. D.; Maiuolo, L.; Nardi, M.; Procopio, A.; Tagarelli, A. Eur. J. Org. Chem. 2004, 39, 2176.
[15] (a) Ohkubo, M.; Mochizuki, S.; Sano, T.; Kawaguchi, Y.; Okamoto, S. Org. Lett. 2007, 9, 773.
(b) Sajiki, H.; Hirota, K. Chem. Pharm. Bull. 2003, 51, 320.
(c) Paula, S.; Abell, J.; Deye, J.; Elam, C.; Lape, M.; Purnell, J. Ratliff, R.; Sebastian, K.; Zultowsky, J.; Kempton, R. J. Bioorg. Med. Chem. 2009, 17, 6613.
[16] Chakraborti, A. K.; Chankeshwara, S. V. J. Org. Chem. 2009, 74, 1367.
[17] Spurg, A.; Waldvogel, S. R. Eur. J. Org. Chem. 2008, 2, 337.
[18] (a) Venkataramanan, B.; James, W. L. G.; Vittal, J. J.; Suresh, V. Cryst. Growth Des. 2004, 4, 553.
(b) Marx, J. N.; Argyle, J. C.; Norman, L. R. J. Am. Chem. Soc. 1974, 96, 2121.
(c) Baggaley, K. H.; Fears, R.; Hindley, R. H.; Morgan, B.; Murrell, E.; Thorne, D. E. J. Med. Chem. 1977, 20, 1388.
[19] (a) Zhang, G.; Ren, X.; Chen, J.; Hu, M.; Cheng, J. Org. Lett. 2011, 13, 5004.
(b) Tao, C. Z.; Liu, W. W.; Sun, J. Y. Chin. Chem. Lett. 2009, 20, 1170.
[20] Li, Y.; Chen, T.; Wang, H.; Zhang, R.; Jin, K.; Wang, X.; Duan, C. Synlett 2011, 1713.
[21] Kern, N.; Dombray, T.; Blanc, A.; Weibel, J.-M.; Pale, P. J. Org. Chem. 2012, 77, 9227.
[22] (a) Larsson, J. P. WO 02/09257, 2002.
(b) Robinson, R.; Smith, J. C. J. Chem. Soc. 1926, 392.
[23] (a) Ploypradith, P.; Cheryklin, P.; Niyomtham, N.; Bertoni, D. R.; Ruchirawat, S. Org. Lett. 2007, 9, 2637.
(b) Petchmanee, T.; Ploypradith, P.; Ruchirawat, S. J. Org. Chem. 2006, 71, 2892.
[24] (a) Boger, D. L.; Coleman, R. S. J. Org. Chem. 1986, 51, 5436.
(b) Kissau, L.; Stahl, P.; Mazitschek, R.; Giannis, A.; Waldmann, H. J. Med. Chem. 2003, 46, 2917.
(c) Hermite, N. L'; Giraud, A.; Provot, O.; Peyrat, J.-F.; Alami, M.; Brion, J.-D. Tetrahedron 2006, 62, 11994.
[25] (a) Ramachary, D. R.; Kishor, M. J. Org. Chem. 2007, 72, 5056.
(b) Minami, N.; Kijima, S. Chem. Pharm. Bull. 1979, 27, 1490.
[26] (a) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2010, 132, 11592.
(b) Saito, K.; Onizawa, Y.; Kusama, H.; Iwasawa, N. Chem. Eur. J. 2010, 16, 4716.
(c) Huston, R. C.; Swartout, A. A.; Wardwell, G. K. J. Am. Chem. Soc. 1930, 52, 4484.
[27] Batt Maynard, D. G.; Petraitis, J. J.; Shaw, J. E.; Galbraith, W.; Harris, R. R. J. Med. Chem. 1990, 33, 360.
[28] (a) Sano, M.; Iwakura, K. JP 02196686, 1990.
(b) Batt, D. G.; Jones, D. G.; Greca, S. L. J. Org. Chem. 1991, 56, 6704.
[29] (a) Kim, J. D.; Han, G.; Zee, O. P.; Jung, Y. H. Tetrahedron Lett. 2003, 44, 733.
(b) Paul, N. K.; Dietrich, L.; Jha, A. Synth. Commun. 2007, 37, 877.
[30] (a) Trivedi, R.; Tunge, J. A. Org Lett. 2009, 11, 5650.
(b) Punna, S.; Meunier, S.; Finn, M. G. Org. Lett. 2004, 6, 2777.
[31] Orrests, J.; Tucker, S. H.; Whalley, M. J. Chem. Soc. 1951, 303.
[32] Kesharwani, T.; Larock, R. C. Tetrahedron 2008, 64, 6090.
[33] (a) Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694.
(b) Haldar, S.; Koner, S. J. Org. Chem. 2010, 75, 6005.
[34] (a) Mincione, E.; Bovicelli, P. Gazz. Chim. Ital. 1982, 112, 437.
(b) Yusupov, Y.; Abdurasuleva, A. R.; Rezhametov, T.; Mama-dzhanov, A. Uzb. Khim. Zh. 1980, 26.

Outlines

/