Articles

Diversified Synthesis of Imines via Aerobic Oxidation Catalyzed by Dinuclear Butterfly-Like Cu(I) Complex

  • Zhang Lingjuan ,
  • Dang Yujiao ,
  • Zhang Xianming
Expand
  • Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004

Received date: 2019-03-15

  Revised date: 2019-04-03

  Online published: 2019-05-15

Supported by

Project supported by the National Natural Science Foundation of China (No. 21402112), and the 1331 Project of Shanxi Province.

Abstract

The selective catalytic oxidation of amines for the synthesis of imines is important both in laboratory and industrial production. From atom-efficient, economic and environmental view of points, dioxygen selective oxidation of amines was achieved by using wings-opened butterfly-like complex Cu2(ophen)2 as catalyst. It was worth noting that the catalytic system was efficient to the cross-coupling of alcohols with amines, homocoupling of primary amines and oxidative dehydrogenation of secondary amines. The yield is up to 93% and the selectivity of imines is as high as 99%. Avoiding the use of expensive nitroxyl derivatives and base was suitable for practical application.

Cite this article

Zhang Lingjuan , Dang Yujiao , Zhang Xianming . Diversified Synthesis of Imines via Aerobic Oxidation Catalyzed by Dinuclear Butterfly-Like Cu(I) Complex[J]. Chinese Journal of Organic Chemistry, 2019 , 39(6) : 1650 -1654 . DOI: 10.6023/cjoc201903027

References

[1] (a) Largeron, M. Eur. J. Org. Chem. 2013, 2013, 5225.
(b) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111 (4), 2626.
(c) Chen, B.; Wang, L.; Gao, S. ACS Catal. 2015, 5851.
(d) Zhang, Z. G.; Li, J. L.; Huang, G. Q.; Sun, K. Zhang, G. S.; Ma, N. N.; Liu, Q. F.; Liu, T. X. Chin. J. Chem. 2016, 34, 1309.
(e) Patil, R. D.; Adimurthy, S. Asian J. Org. Chem. 2013, 2, 726.
[2] (a) Mukherjee, A.; Nerush, A.; Leitus, G.; Shimon, L. J. W.; Ben David, Y.; Espinosa Jalapa, N. A.; Milstein, D. J. Am. Chem. Soc. 2016, 138, 4298.
(b) Chen, B.; Li, J.; Dai, W.; Wang, L.; Gao, S. Green Chem. 2014, 16, 332.
(c) Zhang, G.; Hanson, S. K. Org. Lett. 2013, 15, 650.
(d) Zhang, E.; Tian, H.; Xu, S.; Yu, X.; Xu, Q. Org. Lett. 2013, 15 (11), 2704.
(e) Montag, M.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2012, 134 (25), 10325.
(f) Maggi, A.; Madsen, R. Organometallics 2012, 31, 451.
(g) He, W.; Wang, L.; Sun, C.; Wu, K.; He, S.; Chen, J.; Wu, P.; Yu , Z. Chem.-Eur. J. 2011, 17, 13308.
(h) Kegnaes, S.; Mielby, J.; Mentzel, U. V.; Christensen, C. H.; Riisager, A. Green Chem. 2010, 12, 1437.
(i) Jaiswal, G.; Landge, V. G.; Jagadeesan, D.; Balaraman, E. Green Chem. 2016, 18, 3232.
(j) Tamura, M.; Tomishige, K. Angew. Chem., Int. Ed. 2015, 54, 864.
(k) Saranya, S.; Ramesh, R.; Grzegorz Malecki, J. Eur. J. Org. Chem. 2017, 2017, 6726.
(l) Chandra, M. D.; Sadhukha, A.; Maayan, G. J. Catal. 2017, 355, 139.
(m) Han, L.; Xing, P.; Jiang, B. Org. Lett. 2014, 16, 3428.
[3] (a) Wang, Z.; Lang, X. Appl. Catal. B-Environ. 2018, 224, 404.
(b) Rodríguez-Lugo, R. E.; Chacón-Terán, M. A.; De León, S.; Vogt, M.; Rosenthal, A. J.; Landaeta, V. R. Dalton Trans. 2018, 47, 2061.
(c) Jin, J.; Yang, C.; Zhang, B.; Deng, K. J. Catal. 2018, 361, 33.
(d) Xu, B.; Hartigan, E. M.; Feula, G.; Huang, Z.; Lumb, J.-P.; Arndtsen, B. A. Angew. Chem., Int. Ed. 2016, 55, 15802.
(e) Su, C.; Tandiana, R.; Tian, B.; Sengupta, A.; Tang, W.; Su, J.; Loh, K. P. ACS Catal. 2016, 3594.
(f) Raza, F.; Park, J. H.; Lee, H.-R.; Kim, H.-I.; Jeon, S.-J.; Kim, J.-H. ACS Catal. 2016, 2754.
(g) Sun, D.; Ye, L.; Li, Z. Appl. Catal. B-Environ. 2015, 164, 428.
(h) Johnson, J. A.; Luo, J.; Zhang, X.; Chen, Y.-S.; Morton, M. D.; Echeverría, E.; Torres, F. E.; Zhang, J. ACS Catal. 2015, 5, 5283.
(i) Wu, X.-F.; Petrosyan, A.; Ghochikyan, T. V.; Saghyan, A. S.; Langer, P. Tetrahedron Lett. 2013, 54, 3158.
(j) Furukawa, S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T. ACS Catal. 2011, 1, 1150.
(k) Varyani, M.; Khatri, P. K.; Jain, S. L. Tetrahedron Lett. 2016, 57, 723.
[4] Nikbakht, F.; Heydari, A. CR Chim. 2015, 18, 132.
[5] (a) Liu, Y.; Chen, Y.; Zhou, W.; Jiang, B.; Zhang, X.; Tian, G. Catal. Sci. Technol. 2018, 8, 5535.
(b) Dutta, I.; De, S.; Yadav, S.; Mondol, R.; Bera, J. K. J. Organomet. Chem. 2017, 849-850, 117.
(c) Bai, L.; Dang, Z. RSC Adv. 2015, 5, 10341.
(d) Wang, J.; Lu, S.; Cao, X.; Gu, H. Chem. Comm. 2014, 50, 5637.
(e) Ryland, B. L.; Stahl, S. S. Angew. Chem., Int. Ed. 2014, 53, 8824.
(f) Tian, H.; Yu, X.; Li, Q.; Wang, J.; Xu, Q. Adv. Synth. Catal. 2012, 354, 2671.
(g) Kang, Q.; Zhang, Y. Green Chem. 2012, 14, 1016.
[6] (a) Lan, Y.-S.; Liao, B.-S.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T. Eur. J.Org. Chem. 2013, 2013, 5160.
(b) Pérez, J. M.; Cano, R.; Yus, M.; Ramón, D. J. Eur. J. Org. Chem. 2012, 2012, 4548.
[7] (a) Huang, B.; Tian, H.; Lin, S.; Xie, M.; Yu, X.; Xu, Q. Tetrahedron Lett. 2013, 54, 2861.
(b) Sonobe, T.; Oisaki, K.; Kanai, M. Chem. Sci. 2012, 3, 3249.
[8] Zhang, L. J.; Liu, J.; Zhang, F. Q.; Zhang, X.-M. J. Catal. 2017, 354, 78.
[9] (a) Shen, Y.; Zhou, Y.; Jiang, L.; Ding, G.; Luo, L.; Zhang, Z.; Xie, X. Tetrahedron 2018, 74, 4266.
(b) Tao, C.; Wang, B.; Sun, L.; Liu, Z.; Zhai, Y.; Zhang, X.; Wang, J. OrgBioChem 2017, 15, 328.
(c) Ray, R.; Chandra, S.; Yadav, V.; Mondal, P.; Maiti, D.; Lahiri, G. K. Chem. Commun. 2017, 53, 4006.
(d) Liu, G.; Sun, L.; Liu, J.; Wang, F.; Guild, C. J. Mol. Catal. 2017, 440, 148.
(e) Pavel, O. D.; Goodrich, P.; Cristian, L.; Coman, S. M.; Pârvulescu, V. I.; Hardacre, C. Catal. Sci. Technol. 2015, 5, 2696.
[10] Patil, R. D.; Adimurthy, S. RSC Adv. 2012, 2, 5119.
[11] Zhang, X.-M.; Tong, M.-L.; Gong, M. L.; Lee, H.-K.; Luo, L.; Li, K. F.; Tong, Y.-X.; Chen, X.-M. Chem.-Eur. J. 2002, 8, 3187.
[12] Zhang, G. Q.; Hanson, S. K. Org. Lett. 2013, 15, 3650.
[13] Zhang, Y.; Lu, F.; Huang, R.; Zhang, H.; Zhao, J. Catal. Commun. 2016, 81, 10.

Outlines

/