Chinese Journal of Organic Chemistry >
Paired Electro-synthesis of Aryl Nitriles
Received date: 2019-03-24
Revised date: 2019-04-30
Online published: 2019-05-15
Supported by
Project supported by the National Key Research and Development Program of China (No. 2017YFB0307503) and the National Program on Key Basic Research Project (973 Program, No. 2012CB722604).
The electro-oxidation cyanation of p-methoxybenzyl alcohol (p-MeOC6H4CH2OH) to prepare aryl nitriles was studied by using cyclic voltammetry (CV) and constant current electrolysis (CCE). The effects of the volume ratio of H2O, concentration of H2SO4, temperature, electrode materials, current density and solvents on the electro-chemical reaction were studied. The results showed that the yield of p-methoxylbenzonitrile (p-MeOBN) was 90% in 0.15 mol·L-1 H2SO4 and 30% H2O-DMSO solution at 60℃ and 10 mA/cm2 of current density when tetrabutylammonium perchlorate (Bu4NClO4) was used as electrolyte. The CCE of aromatic benzyl alcohols with different p-and o-substituted analogs was investigated under the optimized reaction conditions, and the yields toward formation of the corresponding aryl nitriles were 61%~92%. A plausible mechanism for the electro-oxidation cyanation procedure was proposed. A novel paired electrochemical method for the synthesis of aryl nitriles from aromatic benzyl alcohols with hydroxylamine (HAM) as "N" source and aldehyde in situ in undivided electrochemical cell was successfully developed.
Cao Zhicheng , Liu Jianchao , Chu Youqun , Zhao Fengming , Zhu Yinghong , She Yuanbin . Paired Electro-synthesis of Aryl Nitriles[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2499 -2506 . DOI: 10.6023/cjoc201903052
[1] Tsuchiya, D.; Kawagoe, Y.; Moriyama, K.; Togo, H. Org. Lett. 2013, 15, 4194.
[2] Yadav, D. K. T..; Bhanage, B. M. Eur. J. Org. Chem. 2013, 23, 5106.
[3] Kawagoe Y.; Moriyama, K.; Togo, H. Eur. J. Org. Chem. 2014, 19, 4115.
[4] Wang, M.-X. Acc. Chem. Res. 2015, 48, 602.
[5] Nobuhito, K.; Takeshi, O. ACS Catal. 2016, 6, 989.
[6] Hodgson, H. H. Chem. Rev. 1947, 40, 251.
[7] Koelsch, C. F.; Whitney, A. G. J. Org. Chem. 1941, 06, 795.
[8] Takagi, K.; Okamoto, T.; Sakakibara, Y. Chem. Lett. 1973, 2, 471.
[9] Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779.
[10] Zanon, J.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 2890.
[11] Arvela, R. K.; Leadbeater, N. E. J. Org. Chem. 2003, 68, 9122.
[12] (a) Zhou, W.; Xu, J.-J.; Zhang, L.-R.; Jiao, N. Org. Lett. 2010, 12, 2888.
(b) Yu, Z.-W.; Li, L.-Y.; Shen, Z.-M. Chin. J. Org. Chem. 2017, 37, 1273.
[13] Rogic, M. M.; Van Peppen, J. F.; Klein, K. P.; Demmin, T. R. J. Org. Chem. 1974, 39, 3425.
[14] Yamaguchi, K.; Fujiwara, H.; Ogasawara, Y.; Kotani, M.; Mizuno, N. Angew. Chem. Int. Ed. 2007, 46, 3922.
[15] Rokade, B. V.; Prabhu, K. R. J. Org. Chem. 2012, 77, 5364.
[16] Denton, W. I.; Bishop, R. B.; Caldwell, H. P.; Chapman, H. D. Ind. Eng. Chem. 1950, 42, 796.
[17] Cavani, F.; Parrinello, F.; Trifiro, F. J. Molecuhr. Catal. 1987, 43, 117.
[18] Kumar, C. P.; Reddy, K. R.; Rao, V. V.; Chary, K. V. R. Green Chem. 2002, 4, 513.
[19] Zhang, Y.; Wang, J.-B. Angew. Chem. Int. Ed. 2013, 52, 10573.
[20] Murahashi, S.; Komiya, N.; Terai, H. J. Am. Chem. Soc. 2003, 125, 15312.
[21] Murahashi, S. I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005.
[22] Liu, W-P.; Ackermann, L. Chem. Commun. 2014, 50, 1878.
[23] Do, H. Q.; Daugulis, O. Org. Lett. 2010, 12, 2517.
[24] Shu, Z.; Ji, W.; Wang, J. Angew. Chem. Int. Ed. 2014, 53, 2186.
[25] Li, J.; Ackermann, L. Angew. Chem. Int. Ed. 2015, 54, 3635.
[26] Gong, T.-J.; Xiao, B.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 10630.
[27] Jiao, N. Nitrogenation Strategy for the Synthesis of N-containing Compounds, Springer, Singapore, 2017, p. 70.
[28] Chaitanya, M.; Yadagiri, D.; Anbarasan, P. Org. Lett. 2013, 15, 4960.
[29] Iida, S.; Togo, H. Tetrahedron 2007, 63, 8274.
[30] Rokade, B. V.; Malekar, S. K.; Prabhu, K. R. Chem. Commun. 2012, 48, 5506.
[31] Zhu, C.; Sun, C.; Wei, Y. Synthesis 2010, 4235.
[32] Vatèle J. M. Synlett 2014, 25, 1275.
[33] Ishida, T.; Watanabe, H.; Takei, T.; Hamasaki, A.; Tokunaga, M.; Harut, M. Appl. Catal. A. 2012, 425, 85.
[34] Oishi, T.; Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2009, 48, 6286.
[35] Preger, Y.; Root, T. W.; Stahl, S. S. ACS Omega 2018, 3, 6091.
[36] Yadav, D. K. T.; Bhanage, B. M. Eur. J. Org. Chem. 2013, 23, 5106.
[37] Wu, Y.-X.; Xi, Y.-C.; Zhao, M.; Wang, S.-Y. Chin. J. Org. Chem. 2018, 38, 2590.
[38] Qu, Q.-H.; Gao, X.-F.; Gao, J.; Yuan, G.-Q. Sci. Chin. Chem. 2015, 58, 747.
[39] Fan, Z.-Q.; Yang, X.-J.; Shen, Z.-L.; Li, M.-C. J. Electrochem. Soc. 2017, 164, 54.
[40] Zhu, Y.-H.; Zhu, Y.; Zeng, H.-Y.; Chen, Z.-Y.; R. D. Little.; Ma, C.-A. J. Electroanal. Chem. 2015, 751, 105.
[41] Zhu, Y.-H.; Chen, Z.-Y.; Zhang, J.-Q.; Wu, Q.-Q.; Ma, C.-A.; Little, R. D. Electrochim. Acta 2016, 207, 308.
[42] Chiou, S.; Hoque, A. K. M. M.; Shine H. J. J. Org. Chem. 1990, 55, 3227.
[43] Zhang, L.; Chen, H.; Zha, Z.-G.; Wang, Z.-Y. Chem. Commun. 2012, 48, 6574.
[44] Meng, L.; Su, J.-H.; Zha, Z.-G.; Zhang, L.; Zhang, Z.-L.; Wang, Z.-Y. Chem. Eur. J. 2013, 19, 5542.
[45] Zhao, H.-Bo.; Xu, P.; Song, J.-S.; Xu, H.-C. Angew. Chem. Int. Ed. 2018, 57, 15153.
[46] Petrosyan, V. A.; Niyazymbetov, M. E.; Ul'yanova, E. V. Russ. Chem. Bull. 1989, 38, 1548.
[47] Petrosyan, V. A.; Niyazymbetov, M. E.; Ul'yanova, E. V. Russ. Chem. Bull. 1990, 39, 546.
[48] Hartmera, M. F.; Waldvogel, S. R. Chem. Commun. 2015, 51, 16346.
/
〈 |
|
〉 |