Chinese Journal of Organic Chemistry >
Progress in Synthesis of Eight-Membered Cyclic Ethers
Received date: 2019-03-28
Revised date: 2019-04-29
Online published: 2019-05-15
Supported by
Project supported by the National Key Research and Development Program of China (No. 2016YFD0201200) and the Fundamental Research Funds for the Central Universities, Nankai University (No. 63191205).
Eight membered cyclic ether compounds are common structural motifs in natural products and bioactive molecules. The efficient synthesis of eight membered ethers has attracted wide attention for organic chemists. Compared with five-to seven-membered cyclic ethers, the synthesis of eight membered cyclic ethers is more challenging. In this paper, the synthetic methods for eight membered cyclic ethers by transition metal catalysis, ring expansion, retro-Claisen rearrangement, ring-closing metathesis, intramolecular amide enol alkylation and organic catalyzed tandem cyclization are reviewed.
Cheng Cheng , Sun Xiaobin , Miao Zhiwei . Progress in Synthesis of Eight-Membered Cyclic Ethers[J]. Chinese Journal of Organic Chemistry, 2019 , 39(8) : 2148 -2156 . DOI: 10.6023/cjoc201903068
[1] Zhou, Z. F.; Menna, M.; Cai, Y. S.; Guo, Y. W. Chem. Rev. 2014, 115, 1543.
[2] (a) Gonzaiez, A. G.; Martín, J. D.; Martín, V. S.; Norte, M.; Peiez, R.; Ruano, J. Z.; Drexler, S. A.; Clardy, J. Tetrahedron 1982, 38, 1009.
(b) Noite, M.; Gonzalez, A. G.; Cataldo, F.; Rodríguez, M. L.; Brito, I. Tetrahedron 1991, 47, 9411.
(c) Kim, H.; Choi, W. J.; Jung, J.; Kim, S.; Kim, D. J. Am. Chem. Soc. 2003, 125, 10238.
[3] (a) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 6, 1091.
(b) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron 1968, 24, 4193.
(c) Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653.
(c) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 6, 109.
[4] Fukuzawa, A.; Takasugi, Y.; Murai, A. Tetrahedron Lett. 1991, 32, 5597.
[5] Suzuki, M.; Takahashi, Y.; Matsuo, Y.; Masuda, M. Phytochemistry 1996, 41, 1101.
[6] (a) Singh, S. B.; Zink, D. L.; Quamina, D. S.; Pelaez, F.; Teran, A.; Felock, P.; Hazuda, D. J. Tetrahedron Lett. 2002, 43, 2351.
(b) Ramana, C. V.; Reddy, C. N.; Gonnade, R. G. Chem. Commun. 2008, 3151.
(c) Tadross, P. M.; Bugga, P.; Stoltz, B. M. Org. Biomol. Chem. 2011, 9, 5354.
(d) Foot, J. S.; Giblin, G. M. P.; Taylor, R. J. K. Org. Lett. 2003, 5, 4441.
[7] (a) Macías, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G.; Fronczek, F. R. Tetrahedron Lett. 1993, 34, 1999.
(b) Macías, F. A.; Molinillo, J. M. G.; Varela, R. M.; Torres, A.; Fronczek, F. R. J. Org. Chem. 1994, 59, 8261.
(c) Macías, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G. J. Nat. Prod. 1999, 62, 1636.
[8] (a) Burton, J. W.; Clark, J. S.; Derrer, S.; Stork, T. C.; Bendall, J. G.; Holmes, A. B. J. Am. Chem. Soc. 1997, 119, 7483.
(b) Tsushima, K.; Murai, A. Tetrahedron Lett. 1992, 33, 4345.
(c) Bratz, M.; Bullock, W. H.; Overman, L. E.; Takemoto, T. J. Am. Chem. Soc. 1995, 117, 5958.
(d) Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J. A. Synlett 1996, 983.
(e) Krüger, J.; Hoffmann, R. W. J. Am. Chem. Soc. 1997, 119, 7499.
(f) Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J. A. J. Org. Chem. 1998, 63, 9728.
[9] Mandal, S. K.; Roy, S. C. Tetrahedron Lett. 2006, 47, 1599.
[10] Coulter, M. M.; Dornan, P. K.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 6932.
[11] Zhao, C. G.; Xie, X. G.; Duan, S. S.; Li, H. L.; Fang, R.; She, X. G. Angew. Chem., Int. Ed. 2014, 53, 10789.
[12] Corrie, T. J. A.; Ball, L. T.; Russell, C. A.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2017, 139, 245.
[13] Liu, R. X.; Wang, Q.; Wei, Y.; Shi, M. Chem. Commun. 2018, 54, 1225.
[14] Snyder, S. A.; Treitler, D. S.; Brucks, A. P.; Sattler, W. J. Am. Chem. Soc. 2011, 133, 15898.
[15] Liao, H. H.; Liu, R. S. Chem. Commun. 2011, 47, 1339.
[16] Cao, T. X.; Kong, Y.; Luo, K.; Chen, L. F.; Zhu, S. F. Angew. Chem., Int. Ed. 2018, 57, 8707.
[17] Boeckman, R. K.; Shair, M. D.; Vargas, J. R.; Stolz. L. A. J. Org. Chem. 1993, 58, 1295.
[18] Boeckman, R. K.; Reeder, M. R. J. Org. Chem. 1997, 62, 6456.
[19] Boeckman, R. K.; Zhang, J.; Reeder, M. R. Org. Lett. 2002, 4, 3891.
[20] Li, Z. B.; Wang, F. P.; Chen, D. L. Chin. J. Org. Chem. 2000, 20, 282(in Chinese). (李正邦,王锋鹏,陈东林,有机化学, 2000, 20, 282.)
[21] Miller, S. J.; Kim, S. H.; Chen, Z. R.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 2108.
[22] Linderman, R. J.; Siedlecki, J.; ONeill, S. A.; Sun, H. J. Am. Chem. Soc. 1997, 119, 6919.
[23] Crimmins, M. T.; Tabet, E. A. J. Am. Chem. Soc. 2000, 122, 5473.
[24] Mori, M.; Kitamura, T.; Sakakibara, N.; Sato, Y. Org. Lett. 2000, 2, 543.
[25] Ortega, N.; Martin, T.; Martin, V. S. Org. Lett. 2006, 8, 871.
[26] Baek, S.; Jo, H.; Kim, H.; Kim, H.; Kim, S.; Kim, D. Org. Lett. 2005, 7, 75.
[27] Kim, G.; Sohn, T.; Kim, D.; Paton. R. S. Angew. Chem., Int. Ed. 2014, 53, 272.
[28] Liang, L.; Li, E. Q.; Dong, X. L.; Huang, Y. Org. Lett. 2015, 17, 4914.
[29] Cheng, C.; Zhang, J. Y.; Wang, X.; Miao, Z. W. J. Org. Chem. 2018, 83, 5450.
/
〈 |
|
〉 |