Reviews

Progress in Synthesis of Eight-Membered Cyclic Ethers

  • Cheng Cheng ,
  • Sun Xiaobin ,
  • Miao Zhiwei
Expand
  • a Research Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071;
    b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071

Received date: 2019-03-28

  Revised date: 2019-04-29

  Online published: 2019-05-15

Supported by

Project supported by the National Key Research and Development Program of China (No. 2016YFD0201200) and the Fundamental Research Funds for the Central Universities, Nankai University (No. 63191205).

Abstract

Eight membered cyclic ether compounds are common structural motifs in natural products and bioactive molecules. The efficient synthesis of eight membered ethers has attracted wide attention for organic chemists. Compared with five-to seven-membered cyclic ethers, the synthesis of eight membered cyclic ethers is more challenging. In this paper, the synthetic methods for eight membered cyclic ethers by transition metal catalysis, ring expansion, retro-Claisen rearrangement, ring-closing metathesis, intramolecular amide enol alkylation and organic catalyzed tandem cyclization are reviewed.

Cite this article

Cheng Cheng , Sun Xiaobin , Miao Zhiwei . Progress in Synthesis of Eight-Membered Cyclic Ethers[J]. Chinese Journal of Organic Chemistry, 2019 , 39(8) : 2148 -2156 . DOI: 10.6023/cjoc201903068

References

[1] Zhou, Z. F.; Menna, M.; Cai, Y. S.; Guo, Y. W. Chem. Rev. 2014, 115, 1543.
[2] (a) Gonzaiez, A. G.; Martín, J. D.; Martín, V. S.; Norte, M.; Peiez, R.; Ruano, J. Z.; Drexler, S. A.; Clardy, J. Tetrahedron 1982, 38, 1009.
(b) Noite, M.; Gonzalez, A. G.; Cataldo, F.; Rodríguez, M. L.; Brito, I. Tetrahedron 1991, 47, 9411.
(c) Kim, H.; Choi, W. J.; Jung, J.; Kim, S.; Kim, D. J. Am. Chem. Soc. 2003, 125, 10238.
[3] (a) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 6, 1091.
(b) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron 1968, 24, 4193.
(c) Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653.
(c) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 6, 109.
[4] Fukuzawa, A.; Takasugi, Y.; Murai, A. Tetrahedron Lett. 1991, 32, 5597.
[5] Suzuki, M.; Takahashi, Y.; Matsuo, Y.; Masuda, M. Phytochemistry 1996, 41, 1101.
[6] (a) Singh, S. B.; Zink, D. L.; Quamina, D. S.; Pelaez, F.; Teran, A.; Felock, P.; Hazuda, D. J. Tetrahedron Lett. 2002, 43, 2351.
(b) Ramana, C. V.; Reddy, C. N.; Gonnade, R. G. Chem. Commun. 2008, 3151.
(c) Tadross, P. M.; Bugga, P.; Stoltz, B. M. Org. Biomol. Chem. 2011, 9, 5354.
(d) Foot, J. S.; Giblin, G. M. P.; Taylor, R. J. K. Org. Lett. 2003, 5, 4441.
[7] (a) Macías, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G.; Fronczek, F. R. Tetrahedron Lett. 1993, 34, 1999.
(b) Macías, F. A.; Molinillo, J. M. G.; Varela, R. M.; Torres, A.; Fronczek, F. R. J. Org. Chem. 1994, 59, 8261.
(c) Macías, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G. J. Nat. Prod. 1999, 62, 1636.
[8] (a) Burton, J. W.; Clark, J. S.; Derrer, S.; Stork, T. C.; Bendall, J. G.; Holmes, A. B. J. Am. Chem. Soc. 1997, 119, 7483.
(b) Tsushima, K.; Murai, A. Tetrahedron Lett. 1992, 33, 4345.
(c) Bratz, M.; Bullock, W. H.; Overman, L. E.; Takemoto, T. J. Am. Chem. Soc. 1995, 117, 5958.
(d) Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J. A. Synlett 1996, 983.
(e) Krüger, J.; Hoffmann, R. W. J. Am. Chem. Soc. 1997, 119, 7499.
(f) Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J. A. J. Org. Chem. 1998, 63, 9728.
[9] Mandal, S. K.; Roy, S. C. Tetrahedron Lett. 2006, 47, 1599.
[10] Coulter, M. M.; Dornan, P. K.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 6932.
[11] Zhao, C. G.; Xie, X. G.; Duan, S. S.; Li, H. L.; Fang, R.; She, X. G. Angew. Chem., Int. Ed. 2014, 53, 10789.
[12] Corrie, T. J. A.; Ball, L. T.; Russell, C. A.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2017, 139, 245.
[13] Liu, R. X.; Wang, Q.; Wei, Y.; Shi, M. Chem. Commun. 2018, 54, 1225.
[14] Snyder, S. A.; Treitler, D. S.; Brucks, A. P.; Sattler, W. J. Am. Chem. Soc. 2011, 133, 15898.
[15] Liao, H. H.; Liu, R. S. Chem. Commun. 2011, 47, 1339.
[16] Cao, T. X.; Kong, Y.; Luo, K.; Chen, L. F.; Zhu, S. F. Angew. Chem., Int. Ed. 2018, 57, 8707.
[17] Boeckman, R. K.; Shair, M. D.; Vargas, J. R.; Stolz. L. A. J. Org. Chem. 1993, 58, 1295.
[18] Boeckman, R. K.; Reeder, M. R. J. Org. Chem. 1997, 62, 6456.
[19] Boeckman, R. K.; Zhang, J.; Reeder, M. R. Org. Lett. 2002, 4, 3891.
[20] Li, Z. B.; Wang, F. P.; Chen, D. L. Chin. J. Org. Chem. 2000, 20, 282(in Chinese). (李正邦,王锋鹏,陈东林,有机化学, 2000, 20, 282.)
[21] Miller, S. J.; Kim, S. H.; Chen, Z. R.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 2108.
[22] Linderman, R. J.; Siedlecki, J.; ONeill, S. A.; Sun, H. J. Am. Chem. Soc. 1997, 119, 6919.
[23] Crimmins, M. T.; Tabet, E. A. J. Am. Chem. Soc. 2000, 122, 5473.
[24] Mori, M.; Kitamura, T.; Sakakibara, N.; Sato, Y. Org. Lett. 2000, 2, 543.
[25] Ortega, N.; Martin, T.; Martin, V. S. Org. Lett. 2006, 8, 871.
[26] Baek, S.; Jo, H.; Kim, H.; Kim, H.; Kim, S.; Kim, D. Org. Lett. 2005, 7, 75.
[27] Kim, G.; Sohn, T.; Kim, D.; Paton. R. S. Angew. Chem., Int. Ed. 2014, 53, 272.
[28] Liang, L.; Li, E. Q.; Dong, X. L.; Huang, Y. Org. Lett. 2015, 17, 4914.
[29] Cheng, C.; Zhang, J. Y.; Wang, X.; Miao, Z. W. J. Org. Chem. 2018, 83, 5450.

Outlines

/