REVIEW

Recent Advances of Organic Fluorescent Probes for Detection of Human Serum Albumin

  • Taoyuze Lü ,
  • Kangning Zhu ,
  • Bin Liu
Expand
  • College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060

Received date: 2019-03-27

  Revised date: 2019-04-26

  Online published: 2019-05-21

Supported by

Project supported by the National Natural Science Foundation of China(21602139)

Abstract

Human serum albumin (HSA) is the most abundant protein in human blood plasma, which plays important roles in physiological and biological processes, such as keeping the osmotic pressure and transporting small molecular ligands. The level of HSA in in biological samples especially in blood serum can reveal several health conditions, and thus, quantitative determination of HSA has vital importance for disease diagnosis. In recent years, as the rapid development of fluorescent probe technique, a great number of fluorescent probes have been reported for sensitive and selective detection of HSA. This article summarizes recent reported organic-based fluorescent probes, subsequently carefully describes the chemical structures, sensing mechanisms, spectral features, limit of detection, and binding sites, and moreover, the future developments and prospects for HSA detection by using fluorescent probes have been discussed

Cite this article

Taoyuze Lü , Kangning Zhu , Bin Liu . Recent Advances of Organic Fluorescent Probes for Detection of Human Serum Albumin[J]. Chinese Journal of Organic Chemistry, 2019 , 39(10) : 2786 -2795 . DOI: 10.6023/cjoc201903060

References

[1] Friedrichs, B. J. M. N.; Research, F . 2010, 41, 382.
[2] Kragh-Hansen, U.; Chuang, V. T. G.; Otagiri, M. Biol. Pharm. Bull. 2002, 25, 695.
[3] Quinlan, G. J.; Martin, G. S.; Evans, T. W. Hepatology 2005, 41, 1211.
[4] Viberti, G. C.; Hill, R. D.; Jarrett, R. J.; Argyropoulos, A.; Mahmud, U.; Keen, H. Lancet 1982, 1, 1430.
[5] Mogensen, C. E.; Hansen, K. W.; Osterby, R.; Damsgaard, E.M. Diabetes Care 1992, 15, 1192.
[6] Hoogenberg, K.; Sluiter, W. J.; Dullaart, R. P. F. Acta Endocrinol. 1993, 129, 151.
[7] Murch, S. H.; Winyard, P. J.; Koletzko, S.; Wehner, B.; Cheema, H. A.; Risdon, R. A.; Phillips, A. D.; Meadows, N.; Klein, N. J.; Walker-Smith, J. A. Lancet 1996, 347, 1299.
[8] Li, W.; Chen, D.; Wang, H.; Luo, S.; Dong, L.; Zhang, Y.; Shi, J.; Tong, B.; Dong, Y. ACS Appl. Mater. Interfaces 2015, 7, 26094.
[9] Yu, Y.; Huang, Y.; Hu, F.; Jin, Y.; Zhang, G.; Zhang, D.; Zhao, R . Anal. Chem. 2016, 88, 6374.
[10] Dockal, M.; Carter, D. C.; Ruker, F. J. Biol. Chem. 1999, 274, 29303.
[11] Bhattacharya, A. A.; Grune, T.; Curry, S. J. Mol. Biol. 2000, 303, 721.
[12] Liu, H.; Bao, W.; Ding, H. J.; Jang, J. C.; Zou, G.L. J. Phys. Chem. B 2010, 114, 12938.
[13] He, X. M.; Carter, D. C. Nature 1992, 358, 209.
[14] Doyle, M. J.; Halsall, H. B.; Heineman, W.R. Anal. Chem. 1982, 54, 2318.
[15] Doumas, B. T.; Watson, W. A.; Biggs, H.G. Clin. Chim. Acta 1971, 31, 87
[16] Jiao, C.; Liu, Y.; Lu, W.; Zhang, P.; Wang, Y. Chin. J. Org. Chem. 2019, 39, 591 (in Chinese).
[16] ( 矫春鹏, 刘媛媛, 路文娟, 张平平, 王延风, 有机化学, 2019, 39, 591.)
[17] Li, Z.; Huo, Y.; Yang, X.; Ji, S. Chin. J. Org. Chem. 2016, 36, 2317 (in Chinese).
[17] ( 李宗植, 霍延平, 阳香华, 籍少敏, 有机化学, , 2016, 36, 2317.)
[18] Chen, Z.-Z.; Zhang, N.; Zhang, W.-S.; Tang, B . Chin. J. Anal. Chem. 2006,1341(in Chinese).
[18] ( 陈蓁蓁, 张宁, 张文申, 唐波 , 分析化学, 2006,1341.)
[19] Fan, J. L.; Sun, W.; Wang, Z. K.; Peng, X. J.; Li, Y. Q; Cao, J.F. Chem. Commun. 2014, 50, 9573.
[20] Wang, Y. R.; Feng, L.; Xu, L.; Li, Y.; Wang, D. D.; Hou, J.; Zhou, K.; Jin, Q.; Ge, G. B.; Cui, J. N.; Yang, L. Chem. Commun. 2016, 52, 6064.
[21] Wang, Y. R.; Feng, L.; Xu, L.; Hou, J.; Jin, Q.; Zhou, N.; Lin, Y.; Cui, J. N.; Ge, G.B. Sens. Actuator, B 2017, 245, 923.
[22] Reja, S. I.; Khan, I. A.; Bhalla, V.; Kumar, M. Chem. Commun. 2016, 52, 1182.
[23] Li, H. D.; Yao, Q. C.; Fan, J. L.; Du, J. J.; Wang, J. Y.; Peng, X.J. Dyes Pigm. 2016, 133, 79.
[24] Li, P. B.; Wang, Y. R.; Zhang, S. F.; Xu, L.; Wang, G. C.; Cui, J.N. Tetrahedron Lett. 2018, 59, 1390.
[25] Xu, Y. J.; Su, M. M.; Li, H. L.; Liu, Q. X.; Xu, C.; Yang, Y. S.; Zhu, H.L. Anal. Chim. Acta 2018, 1043, 123.
[26] Xu, Y. Q.; Zhang, M.; Li, B. Y.; Wang, W.; Wang, B. Z.; Yang, Y. S.; Zhu, H. L. Talanta 2018, 185, 568.
[27] Liu, Y.; Pang, B.; Bouhenni, R.; Duah, E.; Paruchuri, S.; McDonald, L. Chem. Commun. 2015, 51, 11060.
[28] Liu, B.; Bi, X. M.; McDonald, L.; Pang, Y.; Liu, D. Q.; Pan, C. J.; Wang, L. Sens. Actuator B-Chem. 2016, 236, 668.
[29] Luo, Z. J.; Liu, B.; Zhu, K. N.; Huang, Y. Y.; Pan, C. J.; Wang, B. F.; Wang, L. Dyes Pigm. 2018, 152, 60.
[30] Liao, C. Y.; Li, F. F.; Huang, S. S.; Zheng, B. Z.; Du, J.; Xiao, D. Biosens. Bioelectron. 2016, 86, 489.
[31] Huang, S. S.; Li, F. F.; Liao, C. Y.; Zheng, B. Z.; Du, J. A.; Xiao, D. Talanta 2017, 170, 562.
[32] Er, J. C.; Tang, M. K.; Chia, C. G.; Liew, H.; Vendrell, M.; Chang, Y. T . Chem. Sci. 2013, 4, 2168.
[33] Hong, Y. N.; Feng, C.; Yu, Y.; Liu, J. Z.; Lam, J. W. Y.; Luo, K. Q.; Tang, B.Z. Anal. Chem. 2010, 82, 7035.
[34] Wang, Z. L.; Ma, K.; Xu, B.; Li, X.; Tian, W.J. Sci. China: Chem. 2013, 56, 1234.
[35] Li, W. Y.; Chen, D. D.; Wang, H.; Luo, S. S.; Dong, L. C.; Zhang, Y. H.; Shi, J. B.; Tong, B.; Dong, Y.P. ACS Appl. Mater. Interfaces 2015, 7, 26094.
[36] Li, J. Z.; Wu, J. D.; Cui, F. C.; Zhao, X.; Li, Y. Q.; Lin, Y.; Li, Y.; Hu, J.; Ju, Y. Sens. Actuator, B 2017, 243, 831.
[37] Shen, P.; Hua, J. Y.; Jin, H. D.; Du, J. Y.; Liu, C. L.; Yang, W.; Gao, Q. Y.; Luo, H. J.; Liu, Y.; Yang, C.Y. Sens. Actuator, B 2017, 247, 587.
[38] Rajasekhar, K.; Achar, C. J.; Govindaraju, T. Org. Biomol. Chem. 2017, 15, 1584.
[39] Chakraborty, G.; Ray, A. K.; Singh, P. K.; Pal, H. Chem. Commun. 2018, 54, 8383.
[40] Wu, Y. Y.; Yu, W. T.; Hou, T. C.; Liu, T. K.; Huang, C. L.; Chen, I. C.; Tan, K.T. Chem. Commun. 2014, 50, 11507.
[41] Dey, N.; Maji, B.; Bhattacharya, S. Chem.-Asian J. 2018, 13, 664.
[42] Schluter, F.; Riehemann, K.; Kehr, N. S.; Quici, S.; Daniliuc, C. G.; Rizzo, F. Chem. Commun. 2018, 54, 642.
[43] Thomas, S. W.; Joly, G. D.; Swager, T.M. J. Chem. Rev. 2007, 107, 1339.
[44] Anees, P.; Sreejith, S.; Ajayaghosh, A. J. Am. Chem. Soc. 2014, 136, 13233.
[45] Fan, X. P.; He, Q. Y.; Sun, S. G.; Li, H. J.; Pei, Y. X.; Xu, Y.Q. Chem. Commun. 2016, 52, 1178.
[46] Yu, Y.; Huang, Y. Y.; Hu, F.; Jin, Y. L.; Zhang, G. X.; Zhang, D. Q.; Zhao, R. Anal. Chem. 2016, 88, 6374.
[47] Gao, T.; Yang, S. Q.; Cao, X. Z.; Dong, J.; Zhao, N.; Ge, P.; Zeng, W. B.; Cheng, Z. Anal. Chem. 2017, 89, 10085.
[48] Fan, J. M.; Zheng, D. M.; Huang, X. Y.; Ding, L. P.; Xin, Y. H.; Fang, Y. Sens. Actuator, B 2018, 263, 336.
[49] Samanta, S.; Halder, S.; Das, G. Anal. Chem. 2018, 90, 7561.
[50] Singh, P.; Mittal, L. S.; Kaur, S.; Kaur, S.; Bhargava, G.; Kumar, S. Sens. Actuator, B 2018, 255, 478.
[51] Liyasova, M. S.; Schopfer, L. M.; Oksana, L. J. B. P . 2010, 79, 784.
[52] Sun, Q.; Wang, W. S.; Chen, Z. Y.; Yao, Y. H.; Zhang, W. B.; Duan, L. P.; Qian, J.H. Chem. Commun. 2017, 53, 6432.
[53] Jin, Q.; Feng, L.; Zhang, S. J.; Wang, D. D.; Wang, F. J.; Zhang, Y.; Cui, J. N.; Guo, W. Z.; Ge, G. B.; Yang, L. Anal. Chem. 2017, 89, 9884.
[54] Ge, G. B.; Feng, L.; Jin, Q.; Wang, Y. R.; Liu, Z. M.; Zhu, X. Y.; Wang, P.; Hou, J.; Cui, J. N; Yang, L. . Anal. Chim. Acta 2017, 989, 71.
Outlines

/