ARTICLES

Pyridine Bridged Organocatalyst for the Synthesis of 3-Aryl-2-oxazolidinones from Carbon Dioxide, Terminal Epoxide, and Aryl Amine

  • Quanyao Liu, ,
  • Lei Shi, ,
  • Ning Liu,
Expand
  • Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003

Received date: 2018-03-16

  Revised date: 2019-05-17

  Online published: 2019-06-03

Abstract

A series of carboxyl group or hydroxyl group functionalized organocatalysts were synthesized and applied in three component reaction of carbon dioxide with epoxide, and aryl amines for the synthesis of 3-aryl-2-oxazolidinones. The method allows the reaction to proceed smoothly in the mild reaction conditions, together with excellent substrates scope of epoxides and aryl amines. The control experiments suggest that the cyclic carbonates are formed by the coupling of epoxides with carbon dioxide, which further react with the amino alcohol generated from epoxides and aryl amines, finally resulting in the desired products.

Cite this article

Quanyao Liu, , Lei Shi, , Ning Liu, . Pyridine Bridged Organocatalyst for the Synthesis of 3-Aryl-2-oxazolidinones from Carbon Dioxide, Terminal Epoxide, and Aryl Amine[J]. Chinese Journal of Organic Chemistry, 2019 , 39(10) : 2882 -2891 . DOI: 10.6023/cjoc201903030

References

[1] (a) Niemi, T.; Repo, T. Eur. J. Org. Chem. 2019,1180.
[1] (b) Chellat, M. F.; Ragu?, L.; Riedl, R. Angew. Chem., Int. Ed. 2016, 55, 6600.
[1] (c) Niemi, T.; Perea-Buceta, J. E.; Fernández, I.; Alakurtti, S.; Rantala, E.; Repo, T. Chem.-Eur. J. 2014, 20, 8867.
[1] (d) Dinsmore, C. J.; Mercer, S. P. Org. Lett. 2004, 6, 2885.
[2] (a) Chen, G.; Fu, C.; Ma, S . Org. Lett. 2009, 11, 2900.
[2] (b) Li, S.; Ye, J.; Yuan, W.; Ma, S . Tetrahedron. 2013, 69 10450.
[3] (a) Kayaki, Y.; Mori, N.; Ikariya, T . Tetrahedron Lett. 2009, 50, 6491.
[3] (b) Yamashita, K.; Hase, S.; Kayaki, Y.; Ikariya, T . Org. Lett. 2015, 17, 2334.
[4] (a) Wang, X.; Gao, W.-Y.; Niu, Z.; Wojtas, L.; Perman, J. A.; Chen, Y.-S.; Li, Z.; Aguila, B.; Ma, S . Chem. Commun. 2018, 54, 1170.
[4] (b) Dabral, S.; Schaub, T. Adv. Synth. Catal. 2019, 361, 223.
[4] (c) Adhikari, D.; Miller, A. W.; Baik, M.-H.; Nguyen, S. T . Chem. Sci. 2015, 6, 1293.
[4] (d) Liu, A.-H.; Dang, Y.-L.; Zhou, H.; Zhang, J.-J.; Lu, X.-B . ChemCatChem 2018, 10 2686.
[4] (e) Seayad, J.; Seayad, A. M.; Ng, J. K. P.; Chai, C. L. L . ChemCatChem 2012, 4 774.
[4] (f) Saptal, V. B.; Bhanage, B. M . ChemSusChem. 2016, 9 1980.
[4] (g) Liu, X.-F.; Wang, M.-Y.; He, L.-N . Curr. Org. Chem. 2017, 21, 698.
[4] (h) Phung, C.; Ulrich, R. M.; Ibrahim, M.; Tighe, N. T. G.; Lieberman, D. L.; Pinhas, A. R . Green Chem. 2011, 13, 3224.
[4] (i) Yang, Z.-Z.; Li, Y.-N.; Wei, Y.-Y.; He, L.-N . Green Chem. 2011, 13, 2351.
[4] (j) Chen, Y.; Luo, R.; Yang, Z.; Zhou, X.; Ji, H . Sustainable Energy Fuels. 2018, 2 125.
[4] (k) Kathalikkattil, A. C.; Tharun, J.; Roshan, R.; Soek, H.-G.; Park, D.-W . Appl. Catal., A 2012, 447-448, 107.
[4] (l) Zhao, Y.-N.; Yang, Z.-Z.; Luo, S.-H.; He, L.-N . Catal. Today 2013, 200 2.
[5] (a) Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, 10022.
[5] (b) Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H . Green Chem. 2017, 19, 1240.
[5] (c) Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G . Org. Lett. 2018, 20, 190.
[5] (d) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G . Org. Lett. 2018, 20, 3049.
[5] (e) Takeda, Y.; Okumura, S.; Tone, S.; Sasaki, I.; Minakata, S . Org. Lett. 2012, 14, 4874.
[6] (a) Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A.; Peshkov, A. A.; Van der Eycken, E. V . Chem. Soc. Rev. 2018, 47, 3861.
[6] (b) Brunel, P.; Monot, J.; Kefalidis, C. E.; Maron, L.; Martin-Vaca, B.; Bourissou, D . ACS Catal. 2017, 7, 2652.
[6] (c) Chang, Z.; Jing, X.; He, C.; Liu, X.; Duan, C . ACS Catal. 2018, 8, 1384.
[6] (d) Zhao, Y.; Qiu, J.; Tian, L.; Li, Z.; Fan, M.; Wang, J . ACS Sustainable Chem. Eng. 2016, 4, 5553.
[6] (e) Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B . Angew. Chem., Int. Ed. 2015, 54, 5399.
[6] (f) García-Domínguez, P.; Fehr, L.; Rusconi, G.; Nevado, C . Chem. Sci. 2016, 7, 3914.
[6] (g) Liu, X.; Wang, M.-Y.; Wang, S.-Y.; Wang, Q.; He, L.-N . ChemSusChem. 2017, 10 1210.
[6] (h) Hu, J.; Ma, J.; Zhang, Z.; Zhu, Q.; Zhou, H.; Lu, W.; Han, B . Green Chem. 2015, 17, 1219.
[6] (i) Zhao, D.; Liu, X.-H.; Zhu, C.; Kang, Y.-S.; Wang, P.; Shi, Z.; Lu, Y.; Sun, W.-Y . ChemCatChem. 2017, 9 4598.
[6] (j) Yang, H.; Zhang, X.; Zhang, G.; Fei, H . Chem. Commun. 2018, 54, 4469.
[7] (a) Rintjema, J.; Epping, R.; Fiorani, G.; Martín, E.; Escudero- Adán, E. C.; Kleij, A. W. Angew. Chem., Int. Ed. 2016, 55, 3972.
[7] (b) Rintjema, J.; Guo, W.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. Chem.-Eur. J. 2015, 21, 10754.
[7] (c) Lee, Y.; Choi, J.; Kim, H . Org. Lett. 2018, 20, 5036.
[8] (a) Zhang, G.; Yang, H.; Fei, H . ACS Catal. 2018, 8, 2519.
[8] (b) Song, Q.-W.; Zhou, Z.-H.; Wang, M.-Y.; Zhang, K.; Liu, P.; Xun, J.-Y.; He, L.-N. ChemSusChem 2018, 9, 2054.
[8] (c) Song, Q.-W.; Chen, W.-Q.; Ma, R.; Yu, A.; Li, Q.-Y.; Chang, Y.; He, L.-N . ChemSusChem 2015, 8, 821.
[8] (d) Song, Q.-W.; Liu, P.; Han, L.-H.; Zhang, K.; He, L.-N . Chin. J. Chem. 2018, 36, 147.
[8] (e) Li, X.-D.; Song, Q.-W.; Lang, X.-D.; Chang, Y.; He, L.-N . ChemPhysChem. 2017, 18 3182.
[8] (f) Li, X.-D.; Lang, X.-D.; Song, Q.-W.; Guo, Y.-K.; He, L.-N . Chin. J. Org. Chem. 2016, 36, 744 (in Chinese).
[8] ( 李雪冬, 郎咸东, 宋清文, 郭亚坤, 何良年 , 有机化学, 2016, 36, 744-751.)
[9] (a) Niemi, T.; Perea-Buceta, J. E.; Fernández, I.; Hiltunen, O.-M.; Salo, V.; Rautiainen, S.; R?is?nen, M. T.; Repo, T . Chem.-Eur. J. 2016, 22, 10355.
[9] (b) Mei, C.; Zhao, Y.; Chen, Q.; Cao, C.; Pang, G.; Shi, Y . ChemCatChem 2018, 10, 3057-3068.
[10] (a) Wang, B.; Yang, S.; Min, L.; Gu, Y.; Zhang, Y.; Wu, X.; Zhang, L.; Elageed, E. H. M.; Wu, S.; Gao, G. Adv. Synth. Catal. 2014, 356, 3125.
[10] (b) Zhang, L.; Fu, X.; Gao, G. ChemCatChem 2011, 3, 1359.
[10] (c) Selva, M.; Fabris, M.; Lucchini, V.; Perosa, A.; Noè, M . Org. Biomol. Chem. 2010, 8, 5187.
[10] (d) Lang, X.-D.; Li, Z.-M.; He, L.-N . Catal. Today 2019, 324 167.
[10] (e) Hang, G.; Nian-Fa, Y.; Guo-Jun, D.; Guang-Yi, X . Chem. Lett. 2009, 38, 584.
[10] (f) Zhang, Y.; Wang, B.; Elageed, E. H. M.; Qin, L.; Ni, B.; Liu, X.; Gao, G . ACS Macro Lett. 2016, 5, 435.
[11] Wang, B.; Elageed, E. H. M.; Zhang, D.; Yang, S.; Wu, S.; Zhang, G.; Gao, G. ChemCatChem 2014, 6, 278.
[12] Hosseinian, A.; Ahmadi, S.; Mohammadi, R.; Monfared, A.; Rahmani, Z. J. CO2 Util. 2018, 27, 381.
[13] Wang, B.; Luo, Z.; Elageed, E. H.M.; Wu, S.; Zhang, Y.; Wu, X.; Xia, F.; Zhang, G.; Gao, G ChemCatChem. 2016, 8 830.
[14] Lv, M.; Wang, P.; Yuan, D.; Yao, Y . ChemCatChem. 2017, 9 4451.
[15] Seo, U. R.; Chung, Y. K. Green Chem. 2017, 19, 803.
[16] Sadeghzadeh, S. M.; Zhiani, R.; Emrani, S . Catal. Lett. 2018, 148, 119.
[17] Xu, B.; Wang, P.; Lv, M.; Yuan, D.; Yao, Y . ChemCatChem. 2016, 8 2466.
[18] Chen, F.; Li, M.; Wang, J.; Dai, B.; Liu, N. J. CO2 Util. 2018, 28, 181.
[19] (a) Wang, L.; Liu, N.; Dai, B.; Hu, H. Eur. J. Org. Chem. 2014, 2014, 6493.
[19] (b) Liu, Q.-Y.; Shi, L.; Liu, N. J. Chem. Res. 2019, 43, 248.
[20] Wang, P.; Qin, J.; Yuan, D.; Wang, Y.; Yao, Y . ChemCatChem. 2015, 7 1145.
Outlines

/