ARTICLE

A Novel Fluorescent Sensor Based on Aryl-furfural Functionalized Barbituric Acid for Recognition and Separation of Hg 2+/Fe 3+

  • Wenbo Zhu ,
  • Wei Zhu ,
  • Jindong Ding ,
  • Xiaoqiang Ma ,
  • Hong Yao ,
  • Youming Zhang ,
  • Qi Lin ,
  • Taibao Wei
Expand
  • Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering,Northwest Normal University, Lanzhou 730070

Received date: 2019-03-24

  Revised date: 2019-05-13

  Online published: 2019-06-06

Supported by

Project supported by the National Natural Science Foundation of China(21662031);Project supported by the National Natural Science Foundation of China(21661028);Project supported by the National Natural Science Foundation of China(21574104);Project supported by the National Natural Science Foundation of China(21262032)

Abstract

A novel fluorescent sensor based on 5-(3-nitrophenyl)-furan-2-carbaldehyde functionalized barbituric acid derivative (QS) was successfully synthesized. QS was characterized by 1H NMR, 13C NMR and MS. The maximum fluorescence emission wavelength of QS in dimethyl sulfoxide (DMSO) solution was determined to be 498 nm and green fluorescence was emitted under 365 nm ultraviolet lamp. QS showed different fluorescence identification ability for aqueous solution of Hg 2+ and Fe 3+. Hg 2+ can enhance the fluorescence of probe QS to orange, and Fe 3+ quenches its fluorescence, thus realizing real- time detection. The limits of detection of QS for Hg 2+ and Fe 3+ are 3.25×10 –8 and 4.0×10 –8 mol? L –1, respectively. The fluorescence measurements and MS studies suggest that the binding stoichiometry ratios of QS with Hg 2+ and Fe 3+ are recognized as 1∶1, respectively. The possible modes of QS with Hg 2+ and Fe 3+ are proposed. The addition of $H_{2}PO_{4}^{-}$ caused the fluorescence of QS-Fe recover, indicating that QS can be used for cyclic detection of Fe 3+. More importantly, the separation percentages of the solid QS for Hg 2+and Fe 3+ are 92.0% and 91.8% in aqueous solution, respectively, indicating that it has excellent ingestion capacity.

Cite this article

Wenbo Zhu , Wei Zhu , Jindong Ding , Xiaoqiang Ma , Hong Yao , Youming Zhang , Qi Lin , Taibao Wei . A Novel Fluorescent Sensor Based on Aryl-furfural Functionalized Barbituric Acid for Recognition and Separation of Hg 2+/Fe 3+[J]. Chinese Journal of Organic Chemistry, 2019 , 39(10) : 2829 -2834 . DOI: 10.6023/cjoc201903053

References

[1] Wang, J.; Li, Y.; Patel, N. G.; Zhang, G.; Zhou, D.; Pang, Y. Chem. Commun. 2014, 50, 12258.
[2] Zhuang, P.; McBride, M. B.; Xia, H.; Li, N.; Li, Z. Sci. Total Environ. 2009, 407, 1551.
[3] Yan, F.; Zou, Y.; Wang, M.; Mu, X.; Yang, N; Chen, L. . Sens. Actuators, B 2014, 192, 488.
[4] Wu, X. F.; Ma, Q. J.; Wei, X. J.; Hou, Y. M.; Zhu, X. Sens. Actuators, B 2013, 183, 565.
[5] Yue, Q.; Shen, T.; Wang, J.; Wang, L.; Xu, S.; Li, H.; Liu, J. Chem. Commun. 2013, 49, 1750.
[6] Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J.S. Chem. Soc. Rev. 2012, 41, 3210.
[7] López-García, I.; Rivas, R. E.; Hernández-Córdoba, M. Anal. Chim. Acta 2012, 743, 69.
[8] Sun, Z.; Du, J.; Jing, C. J. Environ. Sci. 2016, 39, 134.
[9] Yan, Z.; Hu, L.; You, J. Anal. Methods 2016, 8, 5738.
[10] Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. Chem. Soc. Rev. 2011, 40, 3483.
[11] Sahoo, S. K.; Sharma, D.; Bera, R. K.; Crisponic, G.; Callanm, J.F. Chem. Soc. Rev. 2012, 41, 7195.
[12] Liu, Y.; Duan, W.; Song, W.; Liu, J.; Ren, C.; Wu, J.; Liu, D.; Chen, H. ACS Appl. Mater. Interfaces 2017, 9, 12663.
[13] Rauchfus, T. B . Acc. Chem. Res. 2015, 48, 2107.
[14] Zhang, S.; Li, J.; Zeng, M.; Xu, J.; Wang, X.; Hu, W. Nanoscale 2014, 6, 4157.
[15] Shi, B.; Su, Y.; Zhang, L.; Huang, M.; Liu, R; Zhao, S. . ACS Appl. Mater. Interfaces 2016, 8, 10717.
[16] Han, Y.; Wu, X.; Zhang, X.; Zhou, Z.; Lu, C. ACS Sustainable Chem. Eng. 2016, 4, 5667.
[17] Khadgi, N.; Upretia, A. R.; Li, Y. RSC Adv. 2017, 7, 27007.
[18] Zhang, Y.-Y.; Chen, X.-Z.; Liu, X.-Y.; Wang, M.; Liu, J.-J.; Gao, G.; Zhang, X.-Y.; Sun, R.-Z.; Hou, S.-C.; Wang, H.-M . Sens. Actuators, B. 2018, 273, 1077.
[19] Sakunkaewkasem, S.; Petdum, A.; Panchan, W.; Sirirak, J.; Charoenpanich, A.; Sooksimuang, T.; Wanichacheva, N. ACS Sens. 2018, 3, 1016.
[20] Xia, Q.; Chen, Z.; Zhang, Z.; Liu, R. Chin. J. Org. Chem. 2018, 38, 2700 (in Chinese).
[20] ( 夏琦, 陈子康, 张志德, 刘瑞源, 有机化学, 2018, 38, 2700.)
[21] Wu, Y.-C.; Jiang, K.; Luo, S.-H.; Cao, L.; Wu, H.-Q.; Wang, Z.-Y. Spectrochim. Acta, Part A 2019, 206, 632.
[22] Xu, Z.-H.; Wang, Y.; Wang, Y.; Li, J.-Y.; Luo, W.-F.; Wu, W.-N.; Fan, Y.-C. Spectrochim. Acta, Part A 2019, 212, 146.
[23] Wang, Z.; Yang, J.; Yang, Y.; Xu, X.; Li, M.; Zhang, Y.; Fang, H.; Xu, H.; Wang, S. Chin. J. Org. Chem. 2018, 38, 1401 (in Chinese).
[23] ( 王忠龙, 杨金来, 杨益琴, 徐徐, 李明新, 张燕, 方华, 徐海军, 王石发, 有机化学 , 2018, 38, 1401.)
[24] Shekari, Z.; Younesi, H.; Heydari, A.; Tajbakhsh, M.; Chaichi, M.; Shahbazi, J. A.; Saberi, D. Chemosensors 2017, 5, 26.
[25] Shi, B. B.; Zhang, P.; Wei, T.-B.; Yao, H.; Qi, L.; Liu, J.; Zhang, Y.-M. Tetrahedron 2013, 16. 7981.
[26] Wang, L.-Y.; Fang, G.-P.; Cao, D.-R. Sens. Actuators, B 2015, 207, 849.
[27] Abrego, Z.; Unceta, N.; Sanchez, A.; Gomez-Caballero, A.; Berrio-Ochoa, L. M.; Goicolea, M. A.; Barrio, J. Analyst 2017, 142, 1157.
[28] Asadpour-Zeynali, K.; Amini, R. Sens. Actuators, B 2017, 246, 961.
[29] Kallithrakas-Kontos, N.; Foteinis, S.C. Anal. Chem. 2016, 12, 22.
[30] Song, C. Y.; Yang, B. Y.; Yang, Y. J.; Wang, L.H. Sci. China: Chem. 2016, 59, 16.
[31] Sun, Z. L.; Du, J. J; Jing, C.Y. . J. Environ. Sci. 2016, 39, 134.
[32] West, M.; Ellis, A. T.; Potts, P. J.; Streli, C.; Vanhoof, C.; Wobrauschek, P. J. Anal. At. Spectrom. 2016, 31, 1706.
[33] van den, Berg. C. M. G. , Anal. Chem. 2006, 78, 156.
[34] Lunvongsa, S.; Oshima, M.; Motomizu, S. Talanta 2006, 68, 969.
[35] Graser, C. H.; Banik, N. I.; Bender, K. A.; Lagos, M.; Marquardt, C. M.; Marsac, R.; Montoya, V.; Geckeis, H. Anal. Chem. 2015, 87, 9786.
[36] Liu, R.; Zeng, J. Chin. J. Org. Chem. 2017, 37, 3274 (in Chinese).
[36] ( 刘瑞姣, 曾竟, 有机化学 , 2017, 37, 3274.)
[37] Zhang, M.; Xiao, H.; Han, Z.; Yang, L.; Wu, X. Chin. J. Org. Chem. 2018, 38, 926 (in Chinese).
[37] ( 张敏, 肖慧丰, 韩志湘, 仰榴青, 吴向阳, 有机化学, 2018, 38, 926.)
[38] Zhang, H.; Nie, C.; Wang, J.; Guan, R.; Cao, D. Talanta 2019, 195, 713.
[39] Behera, K. C.; Bag, B. Dyes Pigm. 2016, 135, 143.
[40] Zhang, X.; Man Lai, E. S.; Martin-Aranda, R.; Yeung, K.L. Appl. Catal. A 2004, 261, 109.
[41] Chen, Z.; Cai, D.; Mou, D.; Yan, Q.; Sun, Y.; Pan, W.; Wan, Y.; Song, H.; Yi, W. Bioorg. Med. Chem. 2014, 22, 3279.
[42] Wang, J.; Zhang, L.; Qi, Q.; Li, S.; Jiang, Y. Anal. Methods 2013, 5, 608.
[43] Zhang, Y.-M.; Zhu, W.; Qu, W.-J.; Zhong, K.-P.; Chen, X.-P.; Yao, H.; Wei, T.-B.; Lin, Q. Chem. Commun. 2018, 54, 4549.
[44] Qi, L.; Fan, Y.-Q.; Gong, G.-F.; Mao, P.-P.; Wang, J.; Guan, X.-W.; Liu, J.; Zhang, Y.-M.; Yao, H.; Wei, T.-B. ACS Sustainable Chem. Eng. 2018, 6, 8775.
[45] Li, X.; Lin, Q.; Qu, W-J.; Li, Q.; Chen, X.-B.; Li, W.-T.; Zhang, Y.-M.; Yao, H.; Wei, T.-B. Chin. J. Org. Chem. 2017, 37, 889 (in Chinese).
[45] ( 李翔, 林奇, 曲文娟, 李乔, 程晓斌, 李文婷, 张有明, 姚虹, 魏太保, 有机化学, 2017, 37, 889.)
[46] Li, W.-T.; Qu, W-J.; Zhang, H.-L.; Li, X.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Chin. J. Org. Chem. 2017, 37, 2619 (in Chinese).
[46] ( 李文婷, 曲文娟, 张海丽, 李翔, 林奇, 姚虹, 张有明, 魏太保, 有机化学, 2017, 37, 2619.)
[47] Ma, X.-Q.; Wang, Y.; Wei, T.-B.; Qi, L.-H.; Jiang, X.-M.; Ding, J.-D.; Zhu, W.-B.; Yao, H.; Zhang, Y.-M.; Lin, Q. Dyes Pigm. 2019, 164, 279.
[48] Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2012, 41, 3210.
[49] Shi, W.; Zhao, S.; Su, Y.; Hui, Y.; Xie, Z.F. New J. Chem. 2016, 40, 7814.
[50] Lin, L.; Lv, J.; Ji, Y.; Feng, J.; Liu, Y.; Wang, Z.; Zhang, W. Anal. Lett. 2013, 46, 2890.
[51] Wang, L.; Zeng, R.; Li, C.; Qiao, R. Colloids Surf., B 2009, 74, 284.
Outlines

/