NOTES

Nickel-Catalyzed Coupling of 1,2-Diarylthio-1,2-diarylalkenes with Grignard Reagents for Synthesis of Multi-substituted Alkenes

  • Yan Wu, ,
  • Fan Luo, ,
  • Shimin Pan, ,
  • Yuhan Li, ,
  • Shuhua He,
Expand
  • Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408000

Received date: 2019-04-20

  Revised date: 2019-05-14

  Online published: 2019-06-12

Supported by

Project supported by the Basic and Frontier Research Project of Chongqing City(Cstc2018jcyjAX0721);the Youth Talent Growth Plan Project of Yangtze Normal University(No. 2018QNRC11)

Abstract

A convenient protocol for the synthesis of multi-substituted alkenes from (Z)-1,2-diarylthio-1,2-diarylalkenes with Grignard reagents was developed via the highly selective coupling of (Z)-1,2-diarylthio-1,2-diarylalkenes catalyzed by 5.0 mol% NiCl2(dppe). The leaving organosulfur group could be converted to diaryldisulfide after hydrolysis and oxidation, which realized the recycling of sulfur resources, meeting the requirements of green chemistry. This process tolerated to different (Z)-1,2-diarylthio-1,2-diarylalkenes and Grignard reagents to deliver products in good to excellent yields, providing an efficient route to multi-substituted alkenes.

Cite this article

Yan Wu, , Fan Luo, , Shimin Pan, , Yuhan Li, , Shuhua He, . Nickel-Catalyzed Coupling of 1,2-Diarylthio-1,2-diarylalkenes with Grignard Reagents for Synthesis of Multi-substituted Alkenes[J]. Chinese Journal of Organic Chemistry, 2019 , 39(10) : 2946 -2951 . DOI: 10.6023/cjoc201904050

References

[1] (a) Witing, G.; Geissler, G. Justus Liebigs Ann. Chem. 1953,44.
[1] (b) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 619.
[2] Lu, L.-H.; Wang, Z.; Xia, W.; Cheng, P.; Zhang, B.; Cao, Z.; He, W.-M . Chin. Chem. Lett. 2019, 30, 1237.
[3] Caturla, F.; Amat, M.; Reinoso, R. F.; Córdoba, M.; Warrellow, G. Bioorg. Med. Chem. Lett. 2006, 16, 3209.
[4] Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072.
[5] Moragas, T.; Cornella, J.; Martin, R. J. Am. Chem. Soc. 2014, 136, 17702.
[6] Oonishi, Y.; Ogura, J.; Sato, Y. Tetrahedron Lett. 2007, 48, 7505.
[7] Coulter, M. M.; Dornan, P. K.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 6932.
[8] Guo, R.; Huang, J.; Zhao, X. ACS Catal. 2018, 8, 926.
[9] Zhou, C. X.; Larock, R. C. J. Org. Chem. 2005, 70, 3765.
[10] Takahashi, A.; Kirio, Y.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1989, 111, 643.
[11] Oishi, S.; Miyamoto, K.; Niida, A.; Yamamoto, M.; Ajito, K.; Tamamura, H.; Otaka, A.; Kuroda, Y.; Asai, A.; Fujii, N. Tetrahedron 2006, 62, 1416.
[12] Misumi, Y.; Masuda, T. Macromolecules 1998, 31, 7572.
[13] Hall, H. K. J. Angew. Chem., Int. Ed. 1983, 22, 440.
[14] Schreivogel, A.; Maurer, J.; Winter, R.; Baro, A.; Laschat, S. Eur. J. Org. Chem. 2010, 2006, 3395.
[15] Urriolabeitia, E. P.; Villuendas, P.; Ruiz, S.; Vidossich, P.; Lledós, A . Chem-Eur. J. 2018, 24, 13124.
[16] Trost, B. M.; Tracy, J. S. ACS Catal. 2019, 9, 1584.
[17] Wang, Q.; Liu, Z.; Lou, J.; Yu, Z. Org. Lett. 2018, 20, 6007.
[18] He, Z.; Kirchberg, S.; Fr?hlich, R.; Studer, A. Angew. Chem., Int. Ed. 2012, 51, 3699.
[19] Wu, C.; Hong, L.; Shu, H.; Zhou, Q.-H.; Wang, Y.; Sun, M.; Jiang, S.; Cao, Z.; He, W.-M . ACS Sustainable Chem. Eng. 2019, 7, 8798.
[20] Itami, K.; Mineno, M.; Muraoka, N.; Yoshida, J. J. Am. Chem. Soc. 2004, 126, 11778.
[21] Mckinley, N. F.; O’Shea, D. F. J. Org. Chem. 2006, 71, 9552.
[22] Nishihara, Y.; Miyasaka, M.; Okamoto, M.; Takahashi, H.; Inoue, E.; Tanemura, K.; Takagi, K. J. Am. Chem. Soc. 2007, 129, 12634.
[23] Suero, M. G.; Bayle, E. D.; Collins, B. S. L.; Gaunt, M. J. J. Am. Chem. Soc. 2013, 135, 5332.
[24] Alfaro, R.; Parra, A.; Aleman, J.; Ruano, J. L. G.; Tortosa, M. J. Am. Chem. Soc. 2012, 134, 15165.
[25] Itami, K.; Kamei, T.; Yoshida, J. J. Am. Chem. Soc. 2003, 125, 14670.
[26] Yoshida, H.; Kageyuki, I.; Takaki, K. Org. Lett. 2013, 15, 952.
[27] Reiser, O . Angew. Chem., Int. Ed. 2006, 45, 2838.
[28] Iwasaki, M.; Topolov?an, N.; Hu, H.; Nishimura, Y.; Gagnot, G.; Na, N. R.; Nakajima, K.; Nishihara, Y. Org. Lett. 2016, 18, 1642.
[29] Itami, K.; Higashi, S.; Mineno, M.; Yoshida, J. Org. Lett. 2005, 7, 1219.
[30] Jiang, H.; Tang, X.; Xu, Z.; Wang, H.; Han, K.; Yang, X.; Zhou, Y.; Feng, Y.-L.; Yu, X.-Y.; Gui, Q. Org. Biomol. Chem. 2019, 17, 2715.
[31] Bouchet, L. M.; Penenory, A. B.; Robert, M.; Arguello, J. E. RSC Adv. 2015, 5, 11753.
[32] Prasad, C. D.; Sattar, M.; Kumar, S. Org. Lett. 2017, 19, 774.
[33] Chen, J.; Chen, S.; Xu, X.; Tang, Z.; Au, C. T.; Qiu, R. J. Org. Chem. 2016, 81, 3246.
[34] Cha, M.; Shoner, S. C.; Kovacs, J. A. Inorg. Chem. 1993, 32, 1860.
[35] Tzeng, Y.-L.; Yang, P.-F.; Mei, N.-W.; Yuan, T.-M.; Yu, C.-C.; Luh, T.-Y. J. Org. Chem. 1991, 56, 5289.
[36] Ni, Z.-J.; Mei, N.-W.; Shi, X.; Tzeng, Y.-L.; Wang, M. C.; Luh, T.-Y. J. Org. Chem. 1991, 56, 4035.
[37] Ananikov, V. P.; Gayduk, K. A.; Orlov, N. V.; Beletskaya, I. P.; Khrustalev, V. N.; Mikhail, Yu, A . Chem-Eur. J. 2010, 16, 2067.
[38] Nambo, M.; Tahara, Y.; Yim, J. C.-H.; Crudden, C. M . Chem-Eur. J. 2019, 25, 1923.
[39] Obora, Y.; Moriya, H.; Tokunaga, M.; Tsuji, Y . Chem. Commun. 2003, 22, 2820.
[40] Leung, C. W. T.; Hong, Y.; Chen, S.; Zhao, E.; Lam, J. W. Y.; Tang, B. Z. J. Am. Chem. Soc. 2013, 135, 62.
Outlines

/