Research Progress in the Fluorescent Probes for Alkaline Phosphatase

  • Jidong Zhang ,
  • Hongze Liu ,
  • Li Meng
Expand
  • a School of Chemistry & Chemical Engineering, Ankang Univerisity, Ankang 725000
    b Key Laboratory of Se-Enriched Products Development and Quality Control of Ministry of Agriculture, Se-Enriched Products Research Institute of China, Ankang 725000

Received date: 2019-03-04

  Online published: 2019-06-19

Supported by

the Key Projects of Shaanxi Provincial Science & Technology Department(2018PT-31);the Major Scientific Research Projects of the Leading Industry of Ankang City(2016AKZDCY002);the Doctor's Initial Funding of Ankang University(2018AYQDZR06);the Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture(Se-2018B02);the Shaanxi Provincial Innovation Experiment Program for University Students(201839032)

Abstract

Alkaline phosphatase (ALP) is an important enzyme for various mammalian tissues. As a biomarker and diagnostic indicator, ALP provides important information for the applied research of molecular biology and the treatment of human diseases. Due to its reliability of information in human health, the research on fluorescence detection as important detection method has become intense in recent years. The fluorescent chemosensors are categorized by different luminous feature involving excitedstate intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) chemosensors, aggregation-induced luminescent molecules (AIE), diminishes the electron donating ability (D d-E) and disruption of the π conjugated systems (D π-C), inner filter e?ect (IFE) chemosensors, and other sensing systems. In the end, the development tendency of the sensing ensembles for ALP is prospected.

Cite this article

Jidong Zhang , Hongze Liu , Li Meng . Research Progress in the Fluorescent Probes for Alkaline Phosphatase[J]. Chinese Journal of Organic Chemistry, 2019 , 39(11) : 3132 -3144 . DOI: 10.6023/cjoc201903008

References

[1] ColemanJ. E. Annu. Rev. 1992, 21, 411.
[2] ChristensonR. H. Clin. Biochem. 1997, 30, 573.
[3] OoiK.; ShirakiK.; MorishitaY. J. Clin. Lab. Anal. 2007, 21, 133.
[4] WolfP. L. J. Clin. Lab. Anal. 1994, 8, 172.
[5] YeungM. C.-L.; YamV. W.-W. Chem. Sci. 2013, 4, 2928.
[6] LiuY.; SchanzeK. S. Anal. Chem. 2008, 80, 8605.
[7] RuanC.; WangW.; GuB. Anal. Chem. 2006, 78, 3379.
[8] IqbalJ. Anal. Biochem. 2011, 414, 226.
[9] MwiluS. K.; OkelloV. A.; OsongaF. J.; MillerS.; Sadik O. A. Analyst 2014, 139, 5472.
[10] Yin, C.; Huo, F.; Zhang, J. Martínez-Má ez, R.; Yang, Y.; Lv, H.; Li, S. Chem. Soc. Rev. 2013, 42, 6032.
[11] Xu, Q.; Jin, C.; Zhu, X. Chin. J. Org. Chem. 2014, 34, 647 (in Chinese).
[11] 徐勤超, 金灿, 朱雪慧, 邢国文, 有机化学, 2014, 34, 647.
[12] Huang, X.; Zhang, F.; Zhu, L.; Choi, K. Y.; Guo, N.; Guo, J.; Tackett, K.; Anilkumar, P.; Liu, G.; Sun, Y. P.; Lee, S.; Chen, X ACS Nano 2013, 7, 5684.
[13] Wang, J.; Chu, H.; Chen, W. Chin. J. Org. Chem. 2016, 36, 2545 (in Chinese).
[13] 王军, 初紅涛, 陈微微, 孙荣国, 有机化学, 2016, 36, 2545.
[14] KimJ. S.; QuangD. T. Chem. Rev. 2007, 107, 3780.
[15] BozdemirO. A.; GuliyevR.; BuyukcakirO.; SelcukS.; KolemenS.; GulserenG.; NalbantogluT.; BoyaciH.; AkkayaE. U. J. Am. Chem. Soc. 2010, 132, 8029.
[16] HuQ.; ZengF.; YuC.; WuS. Sens. Actuators, B 2015, 220, 720.
[17] SongZ.; KwokR. T.; ZhaoE.; HeZ.; HongY.; LamJ. W. Y.; LiuB.; TangB. Z. ACS Appl. Mater. Interfaces 2014, 6, 17245.
[18] KimT. I.; KimH.; ChoiY.; KimY. Chem. Commun. 2011, 47, 9825.
[19] JiaY.; LiP.; HanK. Chem.-Asian J 2015, 10, 2444.
[20] FanC.; LuoS.; QiH. Luminescence 2016, 31, 423.
[21] LuZ.; WuJ.; LiuW.; ZhangG.; WangP. RSC Adv. 2016, 6, 32046.
[22] HongY.; LamJ. W. Y.; TangB. Z. Chem. Soc. Rev. 2011, 40, 5361.
[23] LuoJ.; XieZ.; LamJ. W. Y.; ChengL.; ChenH.; QiuC.; KwokH. S.; ZhanX.; LiuY.; ZhuD.; TangB. Z. Chem. Commun. 2001, 1740
[24] LiangJ.; KwokR. T.; ShiH.; TangB. Z.; LiuB. ACS Appl. Mater. Interfaces 2013, 5, 8784.
[25] GuX.; ZhangG.; WangZ.; LiuW.; XiaoL.; ZhangD. Analyst 2013, 138, 2427.
[26] LiuH.; LvZ.; DingK. J.; LiuX.; YuanL.; ChenH.; LiX. J. Mater. Chem. B 2013, 1, 5550.
[27] LinM.; HuangJ.; ZengF.; WuS. Chem.-Asian J 2018, 14, 802.
[28] ChenQ.; BianN.; CaoC.; QiuX. L.; QiA. D.; HanB. H. Chem. Commun. 2010, 46, 4067.
[29] ZhangW.; YangH.; LiN.; ZhaoN. RSC Adv. 2018, 8, 14995.
[30] OwensE. A.; HenaryM.; El FakhriG.; SooC. H. Acc. Chem. Res. 2016, 49, 1731.
[31] TanY.; ZhangL.; ManK. H.; PeltierR.; ChenG.; ZhangH.; ZhouL.; WangF.; HoD.; YaoS. Q.; HuY.; SunH. ACS Appl. Mater. Interfaces 2017, 9, 6796.
[32] LiS. J.; LiC. Y.; LiY. F.; FeiJ.; WuP.; YangB.; YangJ. O.; NieS. X. Anal. Chem 2017, 89, 6854.
[33] ZhangQ.; LiS.; FuC.; XiaoY.; ZhangP. DingC. J. Mater. Chem. B 2019, 7, 443.
[34] XuL.; HeX.; HuangY.; MaP.; JiangY.; LiuX.; TaoS.; SunY.; SongD.; WangX. J. Mater. Chem. B 2019, 7, 1284.
[35] GaoZ.; SunJ.; GaoM.; YuF.; ChenL.; ChenQ. Sens. Actuators, B 2018, 265, 565.
[36] FreemanR.; FinderT.; GillR.; WillnerI. Nano Lett. 2010, 10, 2192.
[37] LiG.; FuH.; ChenX.; GongP.; ChenG.; XiaL.; WangH.; YouJ.; WuY. Anal. Chem. 2016, 88, 2720.
[38] MaoG.; ZhangQ.; YangY.; JiX.; HeZ. Anal. Chim. Acta 2019, 1047, 208.
[39] LiuH.; LiM.; XiaY.; RenX. ACS Appl. Mater. Interfaces 2017, 9, 120.
[40] DongL.; MiaoQ.; HaiZ.; YuanY.; LiangG. Anal. Chem. 2015, 87, 6475.
[41] MeiY.; HuQ.; ZhouB.; ZhangY.; HeM.; XuT.; LiF.; KongJ. Talanta 2018, 176, 52.
[42] ZhangH.; XuC.; LiuJ.; LiX.; GuoL.; LiX. Chem. Commun. 2015, 51, 7031.
[43] ChenJ.; JiaoH.; LiW.; LiaoD.; ZhouH.; YuC. Chem.-Asian J. 2013, 8, 8276.
[44] HouX.; YuQ.; ZengF.; YeJ.; WuS. J. Mater. Chem. B 2015, 3, 1042.
[45] GoraiT.; MaitraU. J. Mater. Chem. B 2018, 6, 2143.
Outlines

/