Cross-Coupling of C-Si Bond by Using Silyl Reagents

  • Mingfeng Wang ,
  • Maodong Yu ,
  • Wenshu Wang ,
  • Weili Lin ,
  • Feixian Luo
Expand
  • a College of Life and Environment Science, Minzu University of China, Beijing 100081
    b MUC Center on Translational Neuroscience, Minzu University of China, Beijing 100081
    c Experimental Center of Chemistry, Minzu University of China, Beijing 100081

Received date: 2019-04-10

  Online published: 2019-06-24

Supported by

the National Natural Science Foundation of China(21901263);the National Natural Science Foundation of China(91744206);the Promotion Program for Young Teacher in Science and Technology Research of Minzu University of China(2019QNPY60)

Abstract

Organosilanes have been widely applied in synthetic chemistry, pharmaceuticals, agrochemicals, and materials due to the special properties. Several synthetic strategies including nucleophilic substitution, hydrosilylation of alkene, and C-H silylation have been developed. In recent years, significant progress has advanced in the cross-coupling of C-Si bond for the synthesis of organosilanes, especially in the break-through of the cross-coupling of C(sp3)-Si bond. It has become one of the hottest issues in synthetic chemistry. The recent progress on the cross-coupling of C-Si bond by using silyl reagents is summarized. The application of silyl reagents in cross-coupling for C-Si bond formation including silyl boranes, organosilyl magnesium, organosilyl zinc, unasymetric disilanes, organosilyl aluminum and organosilyl lithium reagents is mainly discussed.

Cite this article

Mingfeng Wang , Maodong Yu , Wenshu Wang , Weili Lin , Feixian Luo . Cross-Coupling of C-Si Bond by Using Silyl Reagents[J]. Chinese Journal of Organic Chemistry, 2019 , 39(11) : 3145 -3153 . DOI: 10.6023/cjoc201904024

References

[1] Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000, Chapter 5.
[2] (a) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science 2012, 335, 567.
[2] (b) Peng, D.; Zhang, Y.; Du, X.; Zhang, L.; Leng, X.; Walter, M. D.; Huang, Z. J. Am. Chem. Soc. 2013, 135, 19154.
[2] (c) Buslov, I.; Becouse, J.; Mazza, S.; Montandon-Clerc, M.; Hu, X. Angew. Chem. Int. Ed. 2015, 54, 14523.
[2] (d) Chen, J.; Cheng, B.; Cao, M.; Lu, Z. Angew. Chem. Int. Ed. 2015, 54, 4661.
[2] (e) Sun, J.; Deng, L. ACS Catal. 2016, 6, 290.
[2] (f) Cheng, B.; Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439.
[2] (g) Yang, Y.; Song, R.-J.; Li, Y.; Ouyang, X.-H.; Li, J.-H.; He, D.-L. Chem. Commun. 2018, 54, 1441.
[2] (h) Liu, J.; Chen, W.; Li, J.; Cui, C. ACS Catal. 2018, 8, 2230.
[2] (i) Huai, G. Z.; Teng, H. -L.; Luo, Y.; Lou, S.-J.; Nishiura, M.; Hou, Z. Angew. Chem. Int. Ed. 2018, 57, 12342.
[3] (a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946.
[3] (b) Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80.
[3] (c) Tobisu, M.; Onoe, M.; Yusuke Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 7506.
[3] (d) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502.
[3] (e) Onoe, M.; Baba, K.; Kim, Y.; Kita, Y.; Mamoru Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2012, 134, 19477.
[3] (f) Liang, Y.; Geng, W.; Wei, J.; Xi, Z. Angew. Chem. Int. Ed. 2012, 51, 1934.
[3] (g) Ghavtadze, N.; Melkonyan, F. S.; Gulevich, A. V.; Huang, C.; Gevorgyan, V. Nat. Chem. 2014, 6. 122.
[3] (h) Kanyiva, K. S.; Kuninobu, Y.; Kanai, M. Org. Lett. 2014, 16, 1968.
[3] (i) Liu, Y. J.; Liu, Y. H.; Zhang, Z. Z.; Yan, S. Y.; Chen, K.; Shi, B. F. Angew. Chem. Int. Ed. 2016, 55, 13859.
[3] (j) Li, W.; Huang, X.; You, J. Org. Lett. 2016, 18, 666.
[3] (k) Zhao, W.-T.; Lu, Z.-Q.; Zheng, H.; Xue, X.-S.; Zhao, D. ACS Catal. 2018, 8, 7997.
[4] (a) Kakiuchi, F.; Igi, K.; Matsumoto, M.; Chatani, N.; Murai, S. Chem. Lett. 2001, 30, 422.
[4] (b) Murakami, K.; Hirano, K.; Yorimitsu, H.; Oshima, K. Angew. Chem. Int. Ed. 2008, 47, 5833.
[4] (c) Liang, Y.; Zhang, S. G.; Xi, Z. F. J. Am. Chem. Soc. 2011, 133, 9204.
[4] (d) Zhang, Q. W.; An, K.; He, W. Angew. Chem. Int. Ed. 2014, 53, 5667.
[4] (e) Li, L. W.; Zhang, Y. B.; Gao, L.; Song, Z. L. Tetrahedron Lett. 2015, 56, 1466.
[4] (f) Zhang, L.; Hang, Z.; Liu, Z.-Q. Angew. Chem. Int. Ed. 2016, 55, 236.
[4] (g) Xu, Z.; Xu, J. Z.; Zhang, J.; Zheng, Z. J.; Cao, J.; Cui, Y. M.; Xu, L. W. Chem. Asian J. 2017, 12, 1749.
[4] (h) Li, W.; Xiao, G.; Deng, G.; Liang, Y. Org. Chem. Front. 2018, 5, 1488.
[5] (a) Zarate, C.; Martin, R. J. Am. Chem. Soc. 2014, 136, 2236.
[5] (b) Somerville, R. J.; Hale, L. V. A.; Gómez-Bengoa, E.; Burés, J.; Martin, R. J.Am.Chem.Soc. 2018, 140, 8771.
[6] Zarate C. Nakajima M. Martin R. J. Am. Chem. Soc. 2017 139 1191.
[7] Guo H. Chen X. Zhao C. He W. Chem. Commun. 2015 51 17410.
[8] Cui B. Jia S. Tokunaga E. Shibata N. Nat. Commun. 2018 9 4393.
[9] Tan D.-H. Lin E. Ji W.-W. Zeng Y.-F. Fan W.-X. Li Q. Gao H. Wang H. Adv. Synth. Cat. 2018 360 1032.
[10] Liu X. W. Zarate C. Martin R. Angew. Chem. Int. Ed. 2019 58 2064.
[11] Guo L. Chatupheeraphat A. Rueping M. Angew. Chem. Int. Ed. 2016 55 11810.
[12] Pu X. Hu J. Zhao Y. Shi Z. ACS Catal. 2016 6 6692.
[13] Huang Z.-D. Ding R. Wang P. Xu Y.-H. Loh T.-P. Chem. Commun. 2016 52 5609.
[14] Scharfbier J. Oestreich M. Synlett 2016 27 1274.
[15] Xue W. Qu Z.-W. Grimme S. Oestreich M. J. Am. Chem. Soc. 2016 138 14222.
[16] Xue W. Oestreich M. Angew. Chem. Int. Ed. 2017 56 11649.
[17] Scharfbier J. Hazrati H. Irran E. Oestreich M. Org. Lett. 2017 19 6562.
[18] Okuda Y. Sato M. Oshima K. Nozaki H. Tetrahedron Lett. 1983 24 2015.
[19] Xue W. Shishido R. Oestreich M. Angew. Chem. Int. Ed. 2018 57 12141.
[20] Oestreich M. Auer G. Adv. Synth. Catal. 2005 347 637.
[21] Chu C. K. Liang Y. Fu G. C. J. Am. Chem. Soc. 2016 138 6404.
[22] Zhang L. Oestreich M. Org. Lett. 2018 20 8061.
[23] (a) Awell, A.; Bokermann, G. C. US 3772347, 1973.
[23] (b) Matsumoto, H.; Nagashima, S.; Yoshihiro, K.; Nagai, Y. J. Organomet. Chem. 1975, 88, C1.
[23] (c) Tobisu, M.; Kita, Y.; Ano, Y.; Chatani, N. J. Am. Chem. Soc., 2008, 130, 15982.
[23] (d) Yamamoto, Y.; Matsubara, H.; Murakami, K.; Yorimitsu, H.; Osuka, A. Chem. Asian J. 2015, 10, 219.
[24] Trost B. M. Yoshida J. Tetrahedron Lett. 1983 24 4895.
[25] Yamamoto E. Ukigai S. Ito H. Synlett 2017 28 2460.
Outlines

/