Chinese Journal of Organic Chemistry >
Progress in N-H Insertion Reaction of α-Diazocarbonyl Compounds
Received date: 2019-04-16
Online published: 2019-07-09
Supported by
the National Natural Science Foundation of China(21901124);the Jiangsu University Natural Science Research Program(19KJB150032);the China Postdoctoral Science Foundation(2019M651809);the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTE1850);the Anhui Province Postdoctoral Science Foundation(2018B252)
The α-diazocarbonyl compounds are easy to prepare and can be dediazonized to highly reactive carbene intermediates under thermolytic or photolytic conditions. Chemical bonds can be efficiently constructed by carbene mediated reactions, including the insertion reaction of carbene into N-H bonds which is an effective method for constructing C-N bonds. The α-diazocarbonyl compounds have received extensive application in organic synthesis and pharmaceutical synthesis. The research progress in the insertion reaction of α-diazocarbonyl compounds into N-H bonds under transition metal, organic small molecules, biomacromolecule or photolytic and thermolytic conditions is summarized, including the reaction mechanism and synthesis applications. Finally, the prospects of this reaction are also discussed.
Key words: α-diazocarbonyl compound; carbene; N-H insertion reaction; C-N bond
Jiajun Feng , Xiangyan Yi , Yaofeng Fu , Yang Yu , Fei Huang . Progress in N-H Insertion Reaction of α-Diazocarbonyl Compounds[J]. Chinese Journal of Organic Chemistry, 2019 , 39(11) : 3013 -3025 . DOI: 10.6023/cjoc201904044
[1] | (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley-Inter- science, New York, 1998. |
[1] | (b) Zhao, X.; Zhang, Y.; Wang, J. Chem. Commun. 2012, 48, 1016. |
[1] | (c) Zhu, S.-F.; Zhou, Q.-L. Nat. Sci. Rev. 2014, 1, 580. |
[1] | (d) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918. |
[1] | (e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; Mckervey, M. A. Chem. Rev. 2015, 115, 9981. |
[1] | (f) Zhang, Z.; Wang, J. Chem. Commun. 2009, 5350. |
[1] | (g) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704. |
[1] | (h) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365. |
[1] | (i) Candeias, N.; Paterna, R.; Gois, P. M. P. Chem. Rev. 2016, 116, 2937. |
[1] | (j) Ren, Y.-Y.; Zhu, S.-F.; Zhou, Q.-L. Org. Biomol. Chem. 2018, 16, 3087. |
[1] | (k) Zhang, D.; Hu, W. H. Chem. Rec. 2017, 17, 739. |
[1] | (l) Wang, J. Chin. J. Org. Chem. 2001, 21, 980 (in Chinese). |
[1] | (王剑波, 有机化学, 2001, 21, 980.) |
[2] | (a) Pelphrey, P.; Hansen, J.; Davies, H. M. L. Chem. Sci. 2010, 1, 254. |
[2] | (b) Sambasivanand, R.; Ball, Z. T. Angew. Chem., Int. Ed. 2012, 51, 8568. |
[2] | (c) Adly, F. G.; Gardiner, M. G.; Ghanem, A. Chem.-Eur. J. 2016, 22, 3447. |
[2] | (d) Qin, C.; Boyarskikh, V.; Hansen, J. H.; Hardcastle, K. I.; Musaev, D. G.; Davies, H. M. L. J. Am. Chem. Soc. 2011, 133, 19198. |
[2] | (e) Xu, H.; Li, Y.-P.; Cai, Y.; Wang, G.-P.; Zhu, S. F.; Zhou, Q.-L., J. Am. Chem. Soc. 2017, 139, 7697. |
[2] | (f) Maas, G. Chem. Soc. Rev. 2004, 33, 183. |
[3] | (a) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. |
[3] | (b) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263. |
[3] | (c) Yakura, T.; Ozono, A.; Matsui, K.; Yamashita, M.; Fujiwara, T. Synlett 2013, 24, 65. |
[3] | (d) Moody, C. J.; Taylor, R. J. Tetrahedron 1990, 46, 6525. |
[3] | (e) Roberts, E.; Sanc?on, J. P.; Sweeney, J. B. Org. Lett. 2005, 7, 2075. |
[4] | (a) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Nature 2016, 533, 230. |
[4] | (b) Liao, K.; Pickel, T. C.; Boyarskikh, V.; Bacsa, J.; Musaev D. G.; Davies, H. M. L. Nature 2017, 551, 609. |
[4] | (c) Qin, C.; Davies, H. M. L. J. Am. Chem. Soc. 2014, 136, 9792. |
[5] | (a) Wang, J.; Hou, Y.; Wu, P. J. Chem. Soc., Perkin Trans. 1 1999, 2277. |
[5] | (b) Clapham, B.; Spanka, C.; Janda, K. D. Org. Lett. 2001, 3, 2173. |
[5] | (c) Matsushita, H.; Lee, S.-H.; Yoshida, K.; Clapham, B.; Koch, G.; Zimmermann, J.; Janda, K. D. Org. Lett. 2004, 6, 4627. |
[5] | (d) Pavlyuk, O.; Teller, H.; McMills, M. C. Tetrahedron Lett. 2009, 50, 2716. |
[6] | (a) Tan, F.; Liu, X.; Hao, X.; Tang, Y.; Lin, L.; Feng, X. ACS Catal. 2016, 6, 6930. |
[6] | (b) Zhang, Y.; Yao, Y.; He, L.; Liu, Y.; Shi, L. Adv. Synth. Catal. 2017, 359, 2754. |
[6] | (c) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nat. Chem. 2010, 2, 546. |
[7] | (a) Zhang, Y.-Z.; Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Zhou, Q.-L. Chem. Commun. 2009, 5362. |
[7] | (b) Brunner, H.; Wutz, K.; Doyle, M. P. Monatsh. Chem. 1990, 121, 755. |
[8] | (a) Neupane, P.; Li, X.; Jung, J. H.; Lee, Y. R.; Kim, S. H. Tetrahedron 2012, 68, 2496. |
[8] | (b) Zrig, S.; Andrioletti, B.; Rose, E.; Colin, J. Tetrahedron Lett. 2005, 46, 1103. |
[8] | (c) Dyer, J.; Jockusch, S.; Balsanek, V.; Sames, D.; Turro, N. J. Org. Chem. 2005, 70, 2143. |
[8] | (d) Dussault, P. H.; Xu, C. Tetrahedron Lett. 2004, 45, 7455. |
[9] | Yudin, A. K. Catalyzed Carbon— Heteroatom Bond Formation, Wiley-VCH, Weinheim, 2011. |
[10] | Burtoloso A. C. B. Dias R. M. P. Bernardim B. Acc. Chem. Res. 2015 48 921. |
[11] | Cama L. D. Christensen B. G. Tetrahedron Lett. 1978 19 4233. |
[12] | Salzmann T. N. Ratcliffe R. W. Christensen B. G. Bouffard F. A. J. Am. Chem. Soc. 1980 102 6161. |
[13] | Ratcliffe R. W. Salzmann T. N. Christensen B. G. Tetrahedron Lett. 1980 21 31. |
[14] | Xu B. Zhu S. F. Zuo X. D. Zhang Z. C. Zhou Q. L. Angew. Chem., Int. Ed. 2014 126 3994. |
[15] | (a) Davies, J. R.; Kane, P. D.; Moody, C. J. J. Org. Chem. 2005, 70, 7305. |
[15] | (b) Bagley, M. C.; Bashford, K. E.; Hesketh, C. L.; Moody, C. J. J. Am. Chem. Soc. 2000, 122, 3301. |
[15] | (c) Garcia, C. F.; McKervey, M. A.; Ye, T. Chem. Commun. 1996, 1465. |
[15] | (d) Lee, S.-H.; Yoshida, K.; Matsushita, H.; Clapham, B.; Koch, G.; Zimmermann, J.; Janda, K. D. J. Org. Chem. 2004, 69, 8829. |
[15] | (e) Liu, K.; Zhu, C.; Min, J.; Peng, S.; Xu, G.; Sun, J. Angew. Chem., Int. Ed. 2015, 54, 12962. |
[15] | (f) Shi, B.; Blake, A. J.; Lewis, W.; Campbell, I. B.; Judkins, B. D.; Moody, C. J. J. Org. Chem. 2010, 75, 152. |
[16] | Yates P. J. Am. Chem. Soc. 1952 74 5376. |
[17] | (a) Zhang, X.; Sui, Z. Tetrahedron Lett. 2006, 47, 5953. |
[17] | (b) Livant, P.; Jie, Y.; Wang, X. Tetrahedron Lett. 205, 46, 2113. |
[17] | (c) Chanthamath, S.; Thongjareun, S.; Shibatomi, K.; Iwasa, S. Tetrahedron Lett. 2012, 53, 4862. |
[17] | (d) Wang, Y.; Zhu, S. Org. Lett. 2003, 5, 745. |
[17] | (e) Vyavahare, V. P.; Chattopadhyay, S.; Puranik, V. G.; Dhavale, D. D. Synlett 2007, 559. |
[17] | (f) Saito, H.; Uchiyama, T.; Miyake, M.; Anada, M.; Hashimoto, S.; Takabatake, T.; Miyairi, S. Heterocycles 2010, 81, 1149. |
[17] | (g) Lian, X.; Meng, J.; Han, Z. Org. Lett. 2016, 18, 4270. |
[17] | (h) Huang, H.; Wang, Y.; Chen, Z.; Hu, W. Adv. Synth. Catal. 2005, 347, 531. |
[17] | (i) Medvedev, J. J; Galkina, O. S.; Klinkova, A. A.; Giera, D. S.; Hennig, L.; Schneider, C.; Nikolaev, V. A. Org. Biomol. Chem. 2015, 13, 2640. |
[17] | (j) Xu, X. F.; Zavalij, P. Y.; Doyle, M. P. Angew. Chem., Int. Ed. 2012, 51, 9829. |
[18] | Saegusa T. Ito Y. Kobayashi S. Hirota K. Jhimizu T. Tetrahedron Lett. 1966 7 6131. |
[19] | (a) Ramakrishna, K.; Sivasankar, C. J. Organomet. Chem. 2016, 805, 122. |
[19] | (b) Ramakrishna, K.; Sivasankar, C. J. Org. Chem. 2016, 81, 6609. |
[20] | Tishinov K. Schmidt K. H?ussinger D. Gillingham D. G. Angew. Chem., Int. Ed. 2012 51 1200. |
[21] | Li H. Cheng P. Jiang L. Yang J. L. Zu L. S. Angew. Chem., Int. Ed. 2017 56 2754. |
[22] | Tishinov K. Schmidt K. H?ussinger D. Gillingham D. G. Angew. Chem., Int. Ed. 2012 51 1200. |
[23] | (a) Chan, K. H.; Guan, X.; Lo, V. K.; Che, C. M. Angew. Chem., Int. Ed. 2014, 53, 2982. |
[23] | (b) Ho, C.-M.; Zhang, J.-L.; Zhou, C.-Y.; Chan, O.-Y.; Yan, J. J.; Zhang, F.-Y.; Huang, J.-S.; Che, C.-M. J. Am. Chem. Soc. 2010, 132, 1886. |
[24] | Aviv I. Gross Z. Chem. Commun. 2006 4477. |
[25] | Mangion I. K. Nwamba I. K. Shevlin M. Huffman M. A. Org. Lett. 2009 11 3566. |
[26] | Anding B. J. Woo L. K. Organometallics 2013 32 2599. |
[27] | Ramakrishna K. Sivasankar C. Org. Biomol. Chem. 2017 15 2392. |
[28] | Bachmann S. Fielenbach D. J?rgensen K. A. Org. Biomol. Chem. 2004 2 3044. |
[29] | Liu B. Zhu S. F. Zhang W. Chen C. Zhou Q.-L. J. Am. Chem. Soc. 2007 129 5834. |
[30] | Lee E. C. Fu G. C. J. Am. Chem. Soc. 2007 129 12066. |
[31] | Hou Z.-R. Wang J. He P. Wang J. Qin B. Liu X.-H. Lin L.-L. Feng X.-M. Angew. Chem., Int. Ed. 2010 49 4763. |
[32] | Zhang Z.-H. Wang J.-B. Tetrahedron 2008 64 6577. |
[33] | Zhu S.-F. Xu B. Wang G.-P. Zhou Q.-L. J. Am. Chem. Soc. 2012 134 436. |
[34] | (a) Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2011, 1015. |
[34] | (b) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236. |
[34] | (c) Devine, S. K. J.; Van Vranken, D. L. Org. Lett. 2007, 9, 2047. |
[34] | (d) Kudirka, R.; Devine, S. K. J.; Adams, C. S.; Van Vranken, D. L. Angew. Chem., Int. Ed. 2009, 48, 3677. |
[35] | (a) Liu, G.; Li, J.; Qiu, L.; Liu, L.; Xu, G. Y.; Ma, B.; Sun, J. T. Org. Biomol. Chem. 2013, 11, 5998. |
[35] | (b) Zhu, Y.; Liu, X.; Dong, S.; Zhou, Y.; Li, W.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2014, 53, 1636. |
[35] | (c) Arredondo, V.; Hiew, S. C.; Gutman, E. S.; Premachandra, I. D. U. A.; Van Vranken, D. L. Angew. Chem., Int. Ed. 2017, 56, 4156. |
[36] | Xu B. Zhu S. F. Xie X. L. Shen J. J. Zhou Q. L. Angew. Chem., Int. Ed. 2011 50 11483. |
[37] | Guo J. X. Zhou T. Xu B. Zhu S. F. Zhou Q. L. Chem. Sci. 2016 7 1104. |
[38] | Wang Y. H. Zhu Y. X. Chen Z. Y. Mi A. Q. Hu W. H. Doyle M. P. Org. Lett. 2003 5 3923. |
[39] | (a) Jiang, J.; Xu, H.-D.; Xi, J.-B.; Ren, B.-Y.; Lü, F.-P.; Xin, G.; Jiang, L.-Q.; Zhang, Z.-Y.; Hu, W.-H. J. Am. Chem. Soc. 2011, 133, 8428. |
[39] | (b) Jiang, J.; Ma, X.-C.; Liu, S.-Y.; Qian, Y.; Lü, F.-P.; Qiu, L.; Wu, X.; Hu, W.-H. Chem. Commun. 2013, 49, 4238. |
[39] | (c) Jiang, L.-Q.; Zhang, D.; Wang, Z.-Q.; Hu, W.-H. Synthesis 2013, 45, 452. |
[39] | (d) Ma, X.-C.; Jiang, J.; Lü, S.-Y.; Yao, W.-F.; Yang, Y.; Liu, S.-Y.; Xia, F.; Hu, W.-H. Angew. Chem., Int. Ed. 2014, 53, 13136. |
[40] | (a) Ooi, T.; Kameda, M.; Fuji, J.; Maruoka, K. Org. Lett. 2004, 6, 2397. |
[40] | (b) Knudsen, K. R.; J?rgensen, K. A. Org. Biomol. Chem. 2005, 3, 1362. |
[40] | (c) Puglisi, A.; Raimondi, L.; Benaglia, M.; Bonsignore, M.; Rossi, S. Tetrahedron Lett. 2009, 50, 4340. |
[41] | Nicolle S. M. William L. Hayes C. J. Moody C. J. Angew. Chem., Int. Ed. 2016 55 3749. |
[42] | (a) So, S. S.; Mattson, A. E. J. Am. Chem. Soc. 2012, 134, 8798. |
[42] | (b) Auvil, T. J.; So, S. S.; Mattson, A. E. Angew. Chem., Int. Ed. 2013, 52, 11317. |
[42] | (c) So, S. S.; Oottikkal, S.; Badji?, J. D.; Hadad, C. M.; Mattson, A. E. J. Org. Chem. 2014, 79, 4832. |
[43] | Wang Z. J. Peck N. E. Renata H. Arnold F. H. Chem. Sci. 2014 5 598. |
[44] | Sreenilayam G. Fasan R. Chem. Commun. 2015 51 1532. |
[45] | Xu X. Li C. Tao Z. Pan Y. J. Adv. Synth. Catal. 2015 357 3341. |
[46] | Hansen S. R. Spangler J. E. Hansen J. H. Davies H. M. L. Org. Lett. 2012 14 4626. |
[47] | Jurberg I. D. Davies H. M. L. Chem. Sci. 2018 9 5112. |
/
〈 |
|
〉 |