Palladium-Catalyzed Regioselective ortho-Acylation of Azoxybenzenes under Aqueous Conditions

  • Xiaopei Chen ,
  • Zhiwei Ma ,
  • Chuanchuan Wang ,
  • Juntao Liu ,
  • Jinsong Wu
Expand

Received date: 2019-05-09

  Online published: 2019-07-09

Supported by

the Key Scientific Research Project for Colleges and Universities of Henan Province(20A150019);the Doctoral Research Startup Fund of Henan University of Animal Husbandry and Economy(53000168)

Abstract

A facile and efficient protocol for palladium-catalyzed ortho-acylation of azoxybenzenes has been developed under aqueous conditions. In this process, the alcohols were oxidized into the corresponding aldehydes in situ, which coupled with azoxybenzenes with excellent regioselectivity, affording the acylated azoxybenzenes in moderate to good yields. A variety of functional groups were tolerated in this procedure.

Cite this article

Xiaopei Chen , Zhiwei Ma , Chuanchuan Wang , Juntao Liu , Jinsong Wu . Palladium-Catalyzed Regioselective ortho-Acylation of Azoxybenzenes under Aqueous Conditions[J]. Chinese Journal of Organic Chemistry, 2019 , 39(11) : 3176 -3182 . DOI: 10.6023/cjoc201905017

References

[1] (a) Surburg, H.; Panten, J. Common Fragrance and Flavour Materials, Wiley Online Library, 2006.
[1] (b) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
[2] (a) Olah, G. A. Friedel-Crafts Chemistry, Wiley, New York, 1973.
[2] (b) Sartori, G.; Maggi, R. Chem. Rev. 2006, 106, 1077.
[2] (c) Fernandez, M.; Tojo, G. In Oxidation of Alcohols to Aldehydes and Ketones: A Guideto Current Common Practice, Ed.: Tojo, E., Springer, New York, 2006.
[2] (d) Sartori, G.; Maggi, R. Advances in Friedel-Crafts Acylation Reactions, CRC Press, Taylor & Francis Group, 2010.
[3] (a) Moore, E. J.; Pretzer, W. R.; O'Connell, T. J.; Harris, J.; LaBounty, L.; Chou, L.; Grimmer, S. S. J. Am. Chem. Soc. 1992, 114, 5888.
[3] (b) Chatani, N.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1996, 118, 493.
[3] (c) Fukuyama, T.; Chatani, N.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1997, 62, 5647.
[3] (d) Chatani, N.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1997, 62, 2604.
[3] (e) Ie, Y.; Chatani, N.; Ogo, T.; Marshall, D. R.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Org. Chem. 2000, 65, 1475.
[4] Moore E. J. Pretzer W. R. OConnell T. J. Harris J. LaBounty L. Chou L. Grimme S. S. J. Am. Chem. Soc. 1992 114 5888.
[5] Jia X. F. Zhang S. H. Wang W. H. Luo F. Cheng J. Org. Lett. 2009 11 3120.
[6] (a) Xiao, F. X.; Shuai, Q.; Zhao, F.; Basle, O.; Deng, G. J.; Li, C. J. Org. Lett. 2011, 13, 1614.
[6] (b) Xu, Z. P.; Xiang, B.; Sun, P. P. RSC Adv. 2013, 3, 1679.
[6] (c) Khemnar, A. B.; Bhanage, B. M. Eur. J. Org. Chem. 2014, 6746.
[6] (d) Kishore, R.; Kantam, M. L.; Yadav, J.; Sudhakar, M.; Laha, S.; Venugopal, A. J. Mol. Catal. A: Chem. 2013, 379, 213.
[6] (e) Zhang, Q.; Yang, F.; Wu, Y. J. Chem. Commun. 2013, 49, 6837.
[6] (f) Li, M. Z.; Ge, H. B. Org. Lett. 2010, 12, 3464.
[7] (a) Han, S.; Sharma, S.; Park, J.; Kim, M.; Shin, Y.; Mishra, N. K.; Bae, J. J.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. J. Org. Chem. 2014, 79, 275.
[7] (b) Sharma, S.; Kim, M.; Park, J.; Kim, M.; Kwak, J. H.; Jung, Y. H.; Oh, J. S.; Lee, Y.; Kim, I. S. Eur. J. Org. Chem. 2013, 6656.
[8] Wu Y. N. Feng L. J. Lu X. Kwong F. Y. Luo H. B. Chem. Commun. 2014 50 15352.
[9] (a) Weng, J. Q.; Yu, Z. Q.; Liu, X. H.; Zhang, G. F. Tetrahedron Lett. 2013, 54, 1205.
[9] (b) Fang, P.; Li, M. Z.; Ge, H. B. J. Am. Chem. Soc. 2010, 132, 11898.
[9] (c) Yin, Z. W.; Sun, P. P. J. Org. Chem. 2012, 77, 11339.
[9] (d) Li, C. L.; Wang, L.; Li, P. H.; Zhou, W. Chem.-Eur. J. 2011, 17, 10208.
[9] (e) Wu, Y. N.; Choy, P. Y.; Mao, F.; Kwong, F. Y. Chem. Commun. 2013, 49, 689.
[10] Yang Y. Z. Chen L. Zhang Z. G. Zhang Y. H. Org. Lett. 2011 13 1342.
[11] (a) Song, H. Y.; Chen, D.; Pi, C.; Cui, X. L.; Wu, Y. J. J. Org. Chem. 2014, 79, 2955.
[11] (b) Li, H. J.; Li, P. H.; Wang, L. Org. Lett. 2013, 15, 620.
[11] (c) Li, H. J.; Li, P. H.; Tan, H.; Wang, L. Chem.-Eur. J. 2013, 19, 14432.
[11] (d) Li, Z. Y.; Li, D. D.; Wang, G. W. J. Org. Chem. 2013, 78, 10414.
[11] (e) Xiong, F.; Qian, C.; Lin, D. G.; Zeng, W.; Lu, X. X. Org. Lett. 2013, 15, 5444.
[12] Zhao J. C. Fang H. Xie C. Han J. L. Li G. G. Pan Y. Asian J. Org. Chem. 2013 2 1044.
[13] (a) Ikeda, T.; Tsu, O. Science 1995, 268, 1873.
[13] (b) Kimura, K.; Suzuki, T.; Yokoyama, M. J. Phys. Chem. 1990, 94, 6090.
[13] (c) Campbell, D.; Dix, L. R.; Rostron, P. Dyes Pigm. 1995, 29, 77.
[13] (d) Huang, J. M.; Kuo, J. F.; Chen, C. Y. J. Appl. Polym. Sci. 1995, 55, 1217.
[13] (e) Lee, H. K.; Kanazawa, A.; Shiono, T.; Ikeda, T.; Fujisawa, T.; Aizawa, M.; Lee, B. Chem. Mater. 1998, 10, 1402.
[13] (f) Li, H. J.; Li, P. H.; Zhao, Q.; Wang, L. Chem. Commun. 2013, 49, 9170.
[14] For selected examples, see: (a) Hou, Z.; Fujiware, Y.; Taniguchi, H. J. Org. Chem. 1988, 53, 3118.
[14] (b) Sakai, N.; Fuji, K.; Nabeshima, S.; Ikeda, R.; Konakahara, T. Chem. Commun. 2010, 46, 3173.
[14] (c) Wada, S.; Urano, M.; Suzuki, H. J. Org. Chem. 2002, 67, 8254.
[14] (d) Wang, Y.; Cheng, G. L.; Cui, X. L. Chin. J. Org. Chem. 2012, 32, 2018 (in Chinese).
[14] (王勇, 程国林, 崔秀灵, 有机化学, 2012, 32, 2018.)
[15] (a) Sun, M.; Hou, L. K.; Chen, X. X.; Yang, X. J.; Sun, W.; Zang, Y. S. Adv. Synth. Catal. 2014, 356, 3789.
[15] (b) Li, H. J.; Li, P. H.; Zhao, Q.; Wang, L. Chem. Commun. 2013, 49, 9170.
[15] (c) Yi, M. L.; Cui, X. L.; Zhu, C. W.; Pi, C.; Zhu, W. M.; Wu, Y. J. Asian J. Org. Chem. 2015, 4, 38.
[15] (d) Hou, L. K.; Chen, X. X.; Li, S.; Cai, S. X.; Zhao, Y. X.; Sun, M.; Yang, X. J. Org. Biomol. Chem., 2015, 13, 4160.
[16] (a) Yang, J.; Fu, T.; Long, Y.; Zhou, X. G. Chin. J. Org. Chem. 2017, 37, 1111 (in Chinese).
[16] (杨军, 付婷, 龙洋, 周向葛, 有机化学, 2017, 37, 1111.)
[16] (b) Zhou, Z.; Duan, J. F.; Mu, X. J.; Xiao, S. Y. Chin. J. Org. Chem. 2018, 38, 585 (in Chinese).
[16] (周曌, 段建凤, 穆小静, 肖尚友, 有机化学, 2018, 38, 585.)
[16] (c) Qin, H. F.; Li, X. R. Chin. J. Org. Chem. 1992, 12, 309 (in Chinese).
[16] (秦合法, 李萱荣, 有机化学, 1992, 12, 309.)
[17] (a) Szabó, F.; Daru, J.; Simkó, D.; Nagy, T. Z.; Stirling, A.; Novák, Z. Adv. Synth. Catal. 2013, 355, 685.
[17] (b) Szabó, F.; Simkó, D.; Novák, Z. RSC Adv. 2014, 4, 3883.
[17] (c) Xiao, F. H.; Chen, S. Q.; Huang, H. W.; Deng, G. J. Eur. J. Org. Chem. 2015, 7919.
[18] Zhang D. Cui X. L. Yang F. F. Q. Zhang Q. Q. Zhu Y. Wu Y. J. Org. Chem. Front. 2015 2 951.
[19] (a) Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 9488.
[19] (b) Xu, L. M.; Li, B. J.; Yang, Z.; Shi, Z. J. Chem. Soc. Rev. 2010, 39, 712.
[19] (c) Sibbald, P. A.; Rosewall, C. F.; Swartz, R. D.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 15945.
[19] (d) Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302.
[19] (e) Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 17050.
[19] (f) Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234.
[19] (g) Racowski, J. M.; Dick, A. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 10974.
[20] Christin G. Beate P. Elisabeth I. Karola R. B. Synthesis 2008 1889.
Outlines

/