Chinese Journal of Organic Chemistry >
Phosphine-Mediated Sequential Staudinger/Aza-Michael Addition of Azides with Unsaturated Ketones to Synthesize β-Amino Substituted Ketones
Received date: 2019-06-06
Revised date: 2019-07-09
Online published: 2019-07-17
Supported by
Project supported by the National Natural Science Foundation of China (No. 21871088), the Chenguang Program supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (No. 16CG22), and the Fundamental Research Funds for the Central Universities (No. 21871088).
A phosphine-mediated Staudinger/Aza-Michael addition of azides with trifluoromethyl substituted α,β-unsaturated ketones was developed, giving hydroamination products in medium to good yields (up to 96%). The hydroamination products could be prepared on gram scale and a wide range of substrates are tolerated under the optimized reaction conditions (30 examples). 31P NMR experiments indicate that this reaction was initiated by Staudinger reaction of azide with phosphine.
Key words: phosphines; Staudinger reaction; aza-Michael addition; azides; hydroamination; alkenes
Cong Tiantian , Wang Huamin , Liu Yuanyuan , Wu Haihong , Zhang Junliang . Phosphine-Mediated Sequential Staudinger/Aza-Michael Addition of Azides with Unsaturated Ketones to Synthesize β-Amino Substituted Ketones[J]. Chinese Journal of Organic Chemistry, 2019 , 39(8) : 2157 -2165 . DOI: 10.6023/cjoc201906005
[1] (a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem. Int. Ed. 2005, 44, 5188.
(b) Patonay, T.; Konya, K.; Juhasz-Toth, E. Chem. Soc. Rev. 2011, 40, 2797.
(c) Jiang, Y.; Kuang, C.; Han, C.; Wang, H.; Liang, X. Chin. J. Org. Chem. 2012, 32, 2231(in Chinese). (江玉波,匡春香,韩春美,王红,梁雪秋,有机化学, 2012, 32, 2231.)
(d) Tang, C.; Jiao, N. J. Am. Chem. Soc. 2012, 134, 18924.
(e) Lubriks, D.; Sokolovs, I.; Suna, E. J. Am. Chem. Soc. 2012, 134, 15436.
[2] (a) Huisgen, R. Angew. Chem. Int. Ed. 1963, 2, 565.
(b) Amblard, F.; Cho, J. H.; Schinazi, R. F. Chem. Rev. 2009, 109, 4207.
(c) Kacprzak, K.; Skiera, I.; Piasecka, M.; Paryzek, Z. Chem. Rev. 2016, 116, 5689.
(d) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.
(e) Shih, J.-L.; Jansone-Popova, S.; Huynh, C.; May, J. A. Chem. Sci. 2017, 8, 7132.
[3] (a) Buchner, E.; Curtius, T. Chem. Ber. 1885, 18, 2371.
(b) Curtius, T. Chem. Ber. 1890, 23, 3023.
(c) Curtius, T. J. Prakt. Chem. 1894, 50, 275.
(d) Curtius, T. Chem. Ztg. 1912, 35, 249.
(e) Curtius, T. J. Prakt. Chem. 1930, 125, 303.
(f) Li, D.; Wu, T.; Liang, K.; Xia, C. Org. Lett. 2016, 18, 2228. (g) Zhao, W.; Wurz, R. P.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2017, 139, 12153.
[4] (a) Schmidt, K. F. Z. Angew. Chem. Int. Ed. 1923, 36, 511.
(b) Schmidt, K. F. Chem. Ber. 1924, 57, 704.
(c) Gu, P.; Sun, J.; Kang, X.-Y.; Yi, M.; Li, X.-Q.; Xue, P.; Li, R. Org. Lett., 2013, 15, 1125.
(d) Motiwala, H. F.; Fehl, C.; Li, S.-W.; Hirt, E.; Porubsky, P.; Aube, J. J. Am. Chem. Soc. 2013, 135, 9000.
(e) Wang, B.-J.; Xue, P.; Gu, P. Chem. Commun. 2015, 51, 2277.
(f) Chen, P.; Sun, C.-H.; Wang, Y.; Xue, Y.; Chen, C.; Shen, M.-H.; Xu, H.-D. Org. Lett. 2018, 20, 1643.
[5] (a) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
(b) Gololobov, Y. G. Tetrahedron 1992, 48, 1353.
(c) Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1980, 37, 437. Staudinger reduction:(d) Kalkeren, H. A.; Bruins, J. J.; Rutjes, F. P. J. T.; Delft, F. L. Adv. Synth. Catal. 2012, 354, 1417.
(e) Lenstra, D. C.; Lenting, P. E.; Mecinovic, J. Green Chem. 2018, 20, 4418. Staudinger ligation reaction:(f) Kumar, R.; Ermolatev, D. S.; Eycken, E. V. J. Org. Chem. 2013, 78, 5737.
(g) Chou, H.-H.; Raines, R. T. J. Am. Chem. Soc. 2013, 135, 14936.
(h) Andrews, K. G.; Denton, R. M. Chem. Commun. 2017, 53, 7982.
(i) Yang, Y.-Y.; Shou, W.-G.; Hong, D.; Wang, Y.-G. J. Org. Chem. 2008, 73, 3574.
(j) White, P. B.; Rijpkema, S. J.; Bunschoten, R. P.; Mecinovic, J. Org. Lett. 2019, 21, 1011.
[6] Wang, H.; Zhang, L.; Tu, Y.; Xiang, R.; Guo, Y.-L.; Zhang, J. Angew. Chem. Int. Ed. 2018, 57, 15787.
[7] CCDC 1920161包含化合物3d的晶体学数据.这些数据可以从"The Cambridge Crystallographic Data Centre"免费获得.
/
〈 |
|
〉 |