Reviews

Multicomponent Reactions: A New Strategy for Enriching the Routes of Value-Added Conversions of Bio-platform Molecules

  • Xu Jing ,
  • Fan Weigang ,
  • Popowycz Florence ,
  • Queneau Yves ,
  • Gu Yanlong
Expand
  • a Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
    b Entre National de la Recherche Scientifique, Université de Lyon, F-69622 Villeurbanne Cedex, France

Received date: 2019-04-26

  Revised date: 2019-07-07

  Online published: 2019-07-24

Supported by

Project supported by the National Natural Science Foundation of China (No. 2171101076).

Abstract

Synthesis of complex molecules via multicomponent reactions (MCRs) in a one-pot reaction manner has emerged as an important means to realize the value-added conversion of cheap and easily available renewable bio-based platform molecules. The diversity and multi-functionality of these biomass-derived molecules provide a fascinating platform for establishing MCRs, and in many cases, the developed MCRs would not be attained from less functionalized substrates. This review introduces some typical examples for the conversion of biomass-derived platform compounds to high value-added products through MCRs. It mainly summarizes the MCRs developed by using polyols, dicarboxylic acids, levulinic acid and furfural derivatives as one of the starting substrates. At the end of this review, a perspective of this direction is also given.

Cite this article

Xu Jing , Fan Weigang , Popowycz Florence , Queneau Yves , Gu Yanlong . Multicomponent Reactions: A New Strategy for Enriching the Routes of Value-Added Conversions of Bio-platform Molecules[J]. Chinese Journal of Organic Chemistry, 2019 , 39(8) : 2131 -2138 . DOI: 10.6023/cjoc201904065

References

[1] Li, H.; Riisager, A.; Saravanamurugan, S.; Pandey, A.; Sangwan, R. S.; Yang, S.; Luque, R. ACS Catal. 2018, 8, 148.
[2] Lai, L.; Zhang, Y. ChemSusChem 2010, 3, 1257.
[3] Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt, W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2010, 49, 5510.
[4] Wang, N.; Yao, Y.; Li, W.; Yang, Y.; Song, Z.; Liu, W.; Wang, H.; Xia, X.; Gao, H. RSC Adv. 2014, 4, 57164.
[5] Mascal, M.; Nikitin, E. B. Green Chem. 2010, 12, 370.
[6] Breeden, S. W.; Clark, J. H.; Farmer, T. J.; Macquarrie, D. J.; Meimoun, J. S.; Nonne, Y.; Reid, J. E. S. J. Green Chem. 2013, 15, 72.
[7] Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.
[8] Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.
[9] Werpy, T.; Petersen, G.; Aden, A; Bozell, J.; Holladay, J.; White, J.; Manheim, A; Eliot, D.; Lasure, L.; Jones, S. Top Value Added Chemicals from Biomass, Vol. 1, Richland Washingto, Pacific Northwest National Laboratory, 2004.
[10] Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12, 539.
[11] Ghashghaei, O.; Seghetti, F.; Lavilla, R. Beilstein J. Org. Chem. 2019, 15, 521.
[12] Ravichandiran, P.; Lai, B.; Gu, Y. Chem. Rec. 2017, 17, 142.
[13] Xu, G.; Wang, A.; Pang, J.; Zheng, M.; Yin, J.; Zhang, T. Appl. Catal. A 2015, 502, 65.
[14] Xin, K.; Li, Q.; Jia, B.; Yu, J. Nat. Gas Chem. Ind. 2016, 41, 88(in Chinese). (辛坤,李青松,贾冰,于记生,天然气化工, 2016, 41, 88.)
[15] Liang, G.; Wang, A.; Li, L.; Xu, G.; Yan, N.; Zhang, T. Angew. Chem., In. Ed. 2017, 56, 3050.
[16] Flamini, R.; Vedova, A. D. J. Agric. Food Chem. 2003, 51, 2300.
[17] Xu, J.; Huang, W.; Bai, R.; Queneau, Y.; Jerome, F.; Gu, Y. Green Chem. 2019, 21, 2061.
[18] Yang, X.; Dong, L.; Chen, L.; Hu, Y. Chem. Ind. Eng. Proc. 2015, 34, 3609(in Chinese). (杨学萍,董丽,陈璐,胡云光,化工进展, 2015, 34, 3609.)
[19] Zheng, M.; Pang, J.; Sun, R.; Wang, A.; Zhang, T. ACS Catal. 2017, 7, 1939.
[20] Zhang, M.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 597.
[21] Dang, T. T.; Seayad, A. M. Chem. Asian J. 2017, 12, 2383.
[22] Le, C.; Wang, L.; Su, Y.; Zhu, S. Chin. J. Appl. Chem. 2014, 31, 367(in Chinese). (乐传俊,王丽,苏杨,朱少萍,应用化学, 2014, 31, 367.)
[23] Zhu, L.; Ai, Z. Ind. Catal. 2013, 21, 19(in Chinese). (朱林,艾珍,工业催化, 2013, 21, 19.)
[24] Lyadov, A. S.; Khadzhiev, S. N. Russ. J. Appl. Chem. 2017, 90, 1727.
[25] Mihara, M.; Morogab, K.; Iwasawab, T.; Nakaia, T.; Ito, T.; Ohno, T.; Mizuno, T. Synlett 2018, 29, 1759.
[26] Wang, Q.; Wu, W.; Zhao, X. Chem. Ind. Eng. Proc. 2004, 23, 794(in Chinese). (王庆昭,吴巍,赵学明,化工进展, 2004, 23, 794.)
[27] Zeikus, J. G.; Jain, M. K.; Elankovan, P. Appl. Microbiol. Biot. 1999, 51, 545.
[28] Halimehjani, A. Z.; Sharifi, M. Tetrahedron 2017, 73, 5778.
[29] Yan, L.; Yao, Q.; Fu, Y. Green Chem. 2017, 19, 5527.
[30] Kang, S.; Fu, J.; Zhang, G. Renewable Sustainable Energy Rev. 2018, 94, 340.
[31] Hanusch-Kompa, C.; Ugi, I. Tetrahedron Lett. 1998, 39, 2725.
[32] Hartweg, M.; Becer, C. R. Green Chem. 2016, 18, 3272.
[33] Rosatella, A. A.; Simeonov, S. P.; Frade, R. F. M.; Afonso, C. A. M. Green Chem. 2011, 13, 754.
[34] Wang, J.; Zhang, C.; Ouyang, P. Chem. Ind. Eng. Proc. 2008, 27, 702(in Chinese). (王军,张春鹏,欧阳平凯,化工进展, 2008, 27, 702.)
[35] Cottier, L.; Descotes, G.; Lewkowski, J.; Skowronski, R. Phosphorus, Sulfur Silicon Relat. Elem. 1996, 116, 93.
[36] Fan, W.; Queneau, Y.; Popowycz, F. RSC Adv. 2018, 8, 31496.
[37] Isca, V. S.; Fernandes, A. C. Green Chem. 2018, 20, 3242.
[38] Zhang, W.; Luo, H.; Meng, M.; Lu, L.; Wu, F., Li, R. Chin. J. Med. Chem. 2012, 23, 181(in Chinese). (张文娟,罗浩,周孟,卢陆飞,武峰,李锐,中国药物化学杂志, 2012, 23, 181.)
[39] Potts, K. T.; Walsh, E. B. J. Org. Chem. 1984, 49, 4099.
[40] Higson, S.; Subrizi, F.; Sheppard, T. D.; Hailes, H. C. Green Chem. 2016, 18, 1855.
[41] Wu, Q.; Chen, J.; Guo, X.; Xu, Y. Eur. J. Org. Chem. 2018, 24, 3105.
[42] Fan, W.; Queneau, Y.; Popowycz, F. Green Chem. 2018, 20, 485.
[43] Quan, Z.; Zhang, B.; Da, Y.; Wang, C. Chin. J. Org. Chem. 2009, 29, 876(in Chinese). (权正军,张彰,达玉霞,王喜存,有机化学, 2009, 29, 876.)
[44] Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043.
[45] Hellman, B.; Lernmark, A.; Sehlin, J.; Taljedal, J. B.; Whistler, R. L. Biochem. Pharmacol. 1973, 22, 29.
[46] Zysk, J. R.; Bushway, A. A.; Whistler, R. L.; Carlton, W. W. J. Reprod. Fertil. 1975, 45, 69.
[47] Kim, J. H.; Kim, S. H.; Hahn, E. W.; Song, C. W. Science 1978, 200, 206.
[48] Hashimoto, H.; Fujimori, T.; Yuasa, H. J. Carbohydr. Chem. 1990, 9, 683.
[49] Johnston, B. D.; Pinto, B. M. J. Org. Chem. 1998, 63, 5797.
[50] Yadav, L. S.; Rai, A. Carbohydr. Res. 2009, 344, 2329.
[51] Rai, V. K.; Singh, S.; Singh, P.; Yadav, L. D. S. Synthesis 2010, 23, 4051.
[52] Goss, P. E.; Baker, M. A.; Carver, J. P.; Dennis, J. W. Clin. Cancer Res. 1995, 1, 935.
[53] Robinson, K. M.; Begovic, M. E.; Rhinehart, B. L.; Heineke, E. W.; Ducep, J. B.; Kastner, P. R.; Marshall, F. N.; Danzin, C. Diabetes 1991, 40, 825.
[54] Rai, V. K.; Scharrof, V. R. J. Heterocycl. Chem. 2017, 54, 1178.
[55] Dangolani, S. K.; Panahi, F.; Tavaf, Z.; Nourisefat, M.; Yousefi, R. Khalafi-Nezhad, A. ACS Omega 2018, 3, 10341.

Outlines

/