Progress of Fluorescent Probes with Perylene Tetracarboxylic Diimide as Chromophore

  • Shi Yan ,
  • Yu Youwei ,
  • Xue Lin ,
  • Wang Yanfeng
Expand
  • a Collge of Food Sciences, Shanxi Normal University, Linfen, Shanxi 041004;
    b Institute of Materia Medica Shandong Academy of Medical Sciences, Jinan 250062

Received date: 2019-06-13

  Revised date: 2019-07-05

  Online published: 2019-07-24

Supported by

Project supported by the National Natural Science Foundation of China (No. 21305079).

Abstract

In recent years, molecular fluorescent probes have attracted extensive attention due to their high sensitivity, high selectivity, specificity and simplicity of design. Perylene tetracarboxylic diimide derivatives (PDIs) are well known for their excellent photothermal stability, chemical stability, high fluorescence quantum yield, large stokes shift and easy modification. Therefore, they can be used as excellent fluorophores. PDI itself has strong electron-withdrawing group and easily to be reduced but it is hard to be oxidized. However, due to their inherent structure, the poor water solubility and aggregatable ablility limited their applications in biological fields. The water solubility of PDI was improved by introducing hydrophilic groups into the structure. Therefore, the PDIs with the unique advantages will have potential application values in the field of fluorescence probe and has been developed rapidly for the past few years. The development of PDI as a chromophore in fluorescent probe for the detection of ion, gas, biomolecules, etc. is systematically summarized. Meanwhile, the design of the probes, fluorescence response mechanism and application of the probe are also discussed. Finally, a novel type of PDI fluorescent probe is proposed. The challenge of construction of the PDIs and future development are also reviewed.

Cite this article

Shi Yan , Yu Youwei , Xue Lin , Wang Yanfeng . Progress of Fluorescent Probes with Perylene Tetracarboxylic Diimide as Chromophore[J]. Chinese Journal of Organic Chemistry, 2019 , 39(12) : 3414 -3437 . DOI: 10.6023/cjoc201906015

References

[1] Huang, C.; Barlow, S.; Marder, S. R. J. Org. Chem. 2011, 76, 2386.
[2] Jozeliunaite, A.; Striela, R.; Labanauskas, L.; Orentas, E. Synthesis 2017, 49, 5176.
[3] Pasaogullari, N.; Icil, H.; Demuth, M. Dyes Pigm. 2006, 69, 118.
[4] Gao, G.; Liang, N.; Geng, H.; Jiang, W.; Fu, H.; Feng, J.; Hou, J.; Feng, X.; Wang, Z. J. Am. Chem. Soc. 2017, 139, 15914.
[5] Wang, H.; Chen, L.; Xiao, Y. J. Mater. Chem. C 2017, 5, 12816.
[6] Liu, Y.; Cole, M. D.; Jiang, Y.; Kim, P. Y.; Nordlund, D.; Emrick, T.; Russell, T. P. Adv. Mater. 2018, 30, 1705976.
[7] Villafiorita-Monteleone, F.; Kozma, E.; Giovanella, U.; Catellani, M.; Paolino, M.; Collico, V.; Colombo, M.; Cappelli, A.; Botta, C. Dyes Pigm. 2018, 149, 331.
[8] Türkmen, G.; Erten-Ela, S.; Icli, S. Dyes Pigm. 2009, 83, 297.
[9] Wang, B.; Yu, C. Angew. Chem. 2010, 122, 1527.
[10] Wang, B.; Zhu, Q.; Liao, D.; Yu, C. J. Mater. Chem. 2011, 21, 4821.
[11] Wang, B.; Jiao, H.; Li, W.; Liao, D.; Wang, F.; Yu, C. Chem. Commun. 2011, 47, 10269.
[12] Würthner, F. Chem. Commun. 2004, 1564.
[13] Guo, X.; Zhang, D.; Zhu, D. Adv. Mater. 2004, 2, 125.
[14] Lin, J.; Zhu, C.; Liu, J.; Chen, B.; Zhang, Y.; Xue, J.; Liu, J. Chin. J. Chem. 2014, 32, 1116.
[15] Wang, H.; Wang, D.; Wang, Q.; Li, X.; Schalley, C. Org. Biomol. Chem. 2010, 8, 1017.
[16] Cheng, H.; Qian, Y. Dyes Pigm. 2015, 112, 317.
[17] He, X.; Liu, H.; Li, Y.; Wang, S.; Li, Y.; Wang, N.; Xiao, J.; Xu, X.; Zhu, D. Adv. Mater. 2005, 17, 2811.
[18] Feng, X.; An, Y.; Yao, Z.; Li, C.; Shi, G. ACS Appl. Mater. Interfaces 2012, 4, 614.
[19] Zhong, L.; Xing, F.; Bai, Y.; Zhao, Y.; Zhu, S. Spectrochim. Acta, Part A 2013, 115, 370.
[20] Wang, Y.; Zhang, L.; Zhang, G.; Wu, Y.; Wu, S.; Yu, J.; Wang, L. Tetrahedron Lett. 2014, 55, 3218.
[21] Fu, L.-N.; Qiao, Z. R.; Jin, X.; Li, L. R. Chem. Res. Appl. 2019, 31, 624(in Chinese). (付丽娜, 乔振蕊, 金鑫, 李林容, 化学研究与应用, 2019, 31, 624.)
[22] Che, Y.; Yang, X.; Zang, L. Chem. Commun. 2008, 1413.
[23] Ruan, Y.; Li, A.; Zhao, J.; Shen, J.; Jiang, Y. Chem. Commun. 2010, 46, 4938.
[24] Fang, H.; Shellaiah, M.; Sinhg, A.; Raju Ramakrishnam, M. V.; Wu, Y.; Lin, H. Sens. Actuators, B 2014, 194, 229.
[25] Liu, K.; Xu, Z.; Yin, M.; Yang, W.; He, B.; Wei, W.; Shen, J. J. Mater. Chem. B 2014, 2, 2093.
[26] Han, A.; Liu, X.; Prestwich, G. D.; Zang, L. Sens. Actuators, B 2014, 198, 274.
[27] Malkongu, S.; Erdemir, S. Dyes Pigm. 2015, 113, 763.
[28] Erdemir, S.; Kocyigit, O.; Karakurt, S. Sens. Actuators, B 2015, 220, 381.
[29] Li, J.; Wu, Y.; Song, F.; Wei, G.; Cheng, Y.; Zhu, C. J. Mater. Chem. 2012, 22, 478.
[30] Zhao, X.; Gong, L.; Wu, Y.; Zhang, X.; Xie, J. Talanta 2016, 149, 98.
[31] Zhou, R.; Li, B.; Wu, N.; Gao, G.; You, J.; Lan, J. Chem. Commun. 2011, 47, 6668.
[32] Wang, H.; Lang, Y.; Wang, H.; Lou, J.; Guo, H.; Li, X. Tetrahedron 2014, 70, 1997.
[33] Zhang, L.; Wang, Y.; Yu, J.; Zhang, G.; Cai, X.; Wu, Y.; Wang, L. Tetrahedron Lett. 2013, 54, 4019.
[34] Kumar, K.; Bhargava, G.; Kumar, S.; Singh, P. New J. Chem. 2018, 42, 1010.
[35] Singh, P.; Mittal, L. S.; Vanita, V.; Kumar, K.; Walia, A.; Bhargava, G.; Kumar, S. J. Mater. Chem. B 2016, 4, 3750.
[36] Malkondu, S. Tetrahedron 2014, 70, 5580.
[37] Liu, X.; Zhang, N.; Zhou, J.; Chang, T.; Fang, C.; Shangguan, D. Analyst 2013, 138, 901.
[38] You, S.; Cai, Q.; Müillen, K.; Yang, W.; Yin, M. Chem. Commun. 2014, 50, 823.
[39] Wan, S.; Zheng, Y.; Shen, J.; Yang, W.; Yin, M. ACS Appl. Mater. Interfaces 2014, 6, 19515.
[40] Shen, Y.; Ma, X.; Zhang, B.; Zhou, Z.; Sun, Q.; Jin, E.; Sui, M.; Tang, J.; Wang, J.; Fan, M. Chem.-Eur. J. 2011, 17, 5319.
[41] Wu, Y.; Zhang, X.; Li, J.; Zhang, C.; Liang, H.; Mao, G.; Zhou, L.; Tan, W.; Yu, R. Anal. Chem. 2014, 86, 10389.
[42] Ling, J.; Naren, G.; Kelly, J.; Moody, T. S.; Prasanna de Silva, A. J. Am. Chem. Soc. 2015, 137, 3763.
[43] Huang, L.; Chang, T. S.-W. Chem. Commun. 2011, 47, 2291.
[44] Aigner, D.; Borisov, S. M.; Petritsch, P.; Klimant, I. Chem. Commun. 2013, 49, 2139.
[45] Aigner, D.; Freunberger, S. A.; Wilkening, M.; Saf, R.; Borisov, S. M.; Klimant, I. Anal. Chem. 2014, 86, 9293.
[46] Ma, Y.; Li, J.; Hou, S.; Zhang, J.; Shi, Z.; Jiang, T.; Wei, X. New J. Chem. 2016, 40, 6615.
[47] Ye, F.; Liang, X.; Wu, N.; Li, P.; Chai, Q.; Fu, Y. Spectrochim. Acta, Part A 2019, 216, 359.
[48] Georgiev, N. I.; Said, A. I.; Toshkova, R. A.; Tzoneva, D.; Bojinov, V. B, Dyes Pigm. 2019, 160, 28.
[49] Aigner, D.; Dmitriev, R. I.; Borisov, S. M.; Papkovsky, D. B.; Klimant, I. J. Mater. Chem. B 2014, 2, 6792.
[50] Zhang, W.; Gan, S. Y.; Li, F.; Han, D.; Zhang, Q.; Niu, L. RSC Adv. 2015, 5, 2207.
[51] Pacheco-Liňán, P.; Moral, M.; Nueda, M. L.; Cruz-Sánchez, R.; Fernández-Sainz, J.; Garzón-Ruiz, A.; Bravo, I.; Melguizo, M.; Laborda, J.; Albaladejo, J. Phys. Chem. C 2017, 121, 24786.
[52] You, S.; Cai, Q.; Müllen, K.; Yang, W.; Yin, M. Chem. Commun. 2014, 50, 823.
[53] Roy, A.; Saha, T.; Talukdar, P. Tetrahedron Lett. 2015, 56, 4975.
[54] Cho, E. J.; Yeo, H. M.; Ryu, B. J.; Jeong, H. A.; Nam, K. C. Bull. Korean Chem. Soc. 2006, 27, 1967.
[55] Chen, Z.; Wang, L.; Zou, G.; Zhang, L.; Zhang, G.; Cai, X.; Teng, M. Dyes Pigm. 2012, 94, 410.
[56] Li, G.; Zhao, Y.; Li, J.; Cao, J.; Zhu, J.; Sun, X.; Zhang, Q. J. Org. Chem. 2015, 80, 196.
[57] Wang, R.; Li, J.; Li, G.; Hao, C.; Zhang, Y.; Wang, S.; Zhao, J.; Liu, Q.; Shi, Z. Dyes Pigm. 2018, 156, 225.
[58] Maiti, D. K.; Roy, S.; Datta, A.; Banerjee, A. Chem. Phys. Lett. 2013, 588, 76.
[59] Googson, F.; Panda, D.; Ray, S.; Mitra, A.; Guha, S.; Saha, S. Org. Biomol. Chem. 2013, 11, 4797.
[60] Du, F.; Bao, Y.; Liu, B.; Tian, J.; Li, Q.; Bai, R. Chem. Commun. 2013, 49, 4631.
[61] Gao, T.; Zhou, W.; Zhao, Y.; Chang, W.; Musendo, R.; Chen, E.; Song, Y.; Ren, X. Chem. Commun. 2019, 55, 3012.
[62] Sudhakar, P.; Neena, K.; Thilagar, P. Dalton Trans. 2019, 48, 7218.
[63] Fu, Y.; Tang, H.; Liu, Z.; Zhang, W. X.; Ren, J. Chin. J. Org. Chem. 2018, 38, 1806(in Chinese). (付怡, 唐辉, 刘泽, 张万轩, 任君, 有机化学, 2018, 38, 1806.)
[64] Liu, Y.; Wang, K.; Guo, D.; Jiang, B. Adv. Funct. Mater. 2009, 19, 2230.
[65] Peng, H.; Ding, L.; Liu, T.; Chen, X.; Li, L.; Yin, S.; Fang, Y. Chem.-Asian J. 2012, 7, 1576.
[66] Zhang, J.; Liu, K.; Wang, G.; Shang, C.; Peng, H.; Liu, T.; Fang, Y. New J. Chem. 2018, 42, 12737.
[67] Hu, J.; Kuang, W.; Deng, K.; Zou, W.; Huang, Y.; Wei, Z.; Faul, C. F. J. Adv. Funct. Mater. 2012, 22, 4149.
[68] Deng, Q.; Zhou, E.; Huang, Y.; Qing, W.; Zhai, H.; Liu, Z.; Wei, Z. Chem. Commun. 2019, 55, 4379.
[69] Ji, S.; Wang, H.; Wang, T.; Yan, D. Adv. Mater. 2013, 25, 1755.
[70] Kalita, A.; Hussain, S.; Malik, A. H.; Subbarao, N. V. V.; Iyer, P. K. J. Mater. Chem. C 2015, 3, 10767.
[71] Huang, Y.; Liu, X.; Wang, Q.; Fu, J.; Zhao, L.; Liu, Z.; Jin, D. J. Mater. Chem. C 2017, 5, 7644.
[72] Wang, J.; He, E.; Liu, X.; Yu, L.; Wang, H.; Zhang, H.; Zhang, H. Sens. Actuators, B 2017, 239, 898.
[73] Wang, K.; Yang, H.; Qian, X.; Xue, Z.; Li, Y.; Liu, H.; Li, Y. Dalton Trans. 2014, 43, 11542.
[74] Liu, X.; Zhai, H.; Zhang, S.; Fu, J.; Huang, Y. Sens. Actuators, B 2017, 243, 500.
[75] Zhu, P.; Wang, Y.; Ma, P.; Li, S.; Fan, F.; Cui, K.; Ge, S.; Zhang, Y.; Yu, J. Anal. Chem. 2019, 91, 5591.
[76] Acikbas, Y.; Erdogan, M.; Capan, R.; Yukruk, F. Sens. Actuators, B 2014, 200, 61.
[77] Sun, Q.; Lü, Y.; Liu, L.; Liu, K.; Miao, R.; Fang, Y. ACS Appl. Mater. Interfaces 2016, 8, 29128.
[78] Abdalla, M. A.; Bayer, J.; Rädler, J. O.; Müllen, K. Angew. Chem., Int. Ed. 2004, 43, 3967.
[79] Aubert, Y.; Asseline, U. Org. Biomol. Chem. 2004, 2, 3496.
[80] Rahe, N.; Rinn, C.; Carell, T. Chem. Commun. 2003, 2120.
[81] Bevers, S.; Schutte, S.; Mclaughlin, L. W. J. Am. Chem. Soc. 2000, 122, 5905.
[82] Zheng, Y.; Long, H.; Schatz, G. C.; Lewis, F. D. Chem. Commun. 2005, 4795.
[83] Wagner, C.; Wagenknecht, H.-A. Org Lett. 2006, 8, 4191.
[84] Wang, Y.; Chen, J.; Jiao, H.; Chen, Y.; Li, W.; Zhang, Q.; Yu, C. Chem.-Eur. J. 2013, 19, 12846.
[85] Chen, J.; Jiao, H.; Li, W.; Liao, D.; Zhou, H.; Yu, C. Chem.-Asian J. 2013, 8, 276.
[86] Chen, X.; Jou, M. J.; Yoon, J. Org. Lett. 2009, 11, 2181.
[87] Yan, L.; Ye, Z.; Peng, C.; Zhang, S. Tetrahedron 2012, 68, 2725.
[88] Li, Y.; Yin, S.; Hou, J.; Meng, L.; Gao, M.; Sun, Y.; Zhang, C.; Bai, S.; Ren, J.; Yu, C. Analyst 2019, 144, 2034.
[89] Wang, K.; An, H.; Rong, Z.; Cao, Z.; Li, X. Biosens. Bioelectron. 2014, 58, 27.
[90] Lin, Y.; Chapman, R.; Stevens, M. M. Anal. Chem. 2014, 86, 6410.
[91] D'Autréaux, B.; Toledano, M. B. J. Nat. Rev. Mol. Cell Biol. 2007, 8, 813.
[92] Weinstain, R.; Savariar, E. N.; Felsen, C N.; Tsien, R. Y. J. Am. Chem. Soc. 2014, 136, 874.
[93] Sundaresan, M.; Yu, Z.; Finkel, T. Science 1995, 270, 296.
[94] Ohshima, H.; Tatemichi, M.; Sawa, T. J. Arch. Biochem. Biophys. 2003, 417, 3.
[95] Shah, A. M.; Channon, K. M. J. Heart 2004, 90, 486.
[96] Barnham, K. J.; Masters, C. L.; Bush, A. I. Nat. Rev. Drug Discovery 2004, 3, 205.
[97] Soh, N.; Ariyoshi, T.; Fukaminato, T.; Nakano, K.; Irie, M.; Imato, T. Bioorg. Med. Chem. Lett. 2006, 16, 2943.
[98] Soh, N.; Ariyoshi, T.; Fukaminato, T.; Nakajima, H.; Nakano, K.; Imato, T. Org. Biomol. Chem. 2007, 5, 3762.
[99] Maki, T.; Soh, N.; Fukaminato, T.; Nakajima, H.; Nakano, K.; Imato, T. Anal. Chim. Acta 2009, 639, 78.
[100] Kaloyanova, S.; Zagraanyarski, Y.; Ritz, S.; Hanulová, M.; Koynov, K.; Vonderheit, A.; Müllen, K.; Peneva, K, J. Am. Chem. Soc. 2016, 138, 2881.
[101] Ou, Z.; Feng, Z.; Liu, G.; Chen, Y.; Gao, Y.; Li, Y.; Wang, X. Chem. Lett. 2015, 44, 425.
[102] Gao, Y.-Y.; Cai, W. J.; Ou, Z. Z.; Ma, T. T.; Wang, Z. J.; Xu, M. H. Imaging Sci. Photochem. 2017, 35, 552(in Chinese). (高云燕, 蔡温姣, 欧植泽, 马拖拖, 王子继, 许墨横, 影像科学与光化学, 2017, 35, 552.)
Outlines

/