Synthesis of o-Halothiobenzamide Derivatives from the Selective Thiolysis Reaction of o-Halobenzonitrile Mediated by CO2

  • Sang Guozhi ,
  • Feng Xuetong ,
  • Chen Juan ,
  • Li Shanshan ,
  • Li Zhuona ,
  • Li Xiao ,
  • Han Limin ,
  • Hong Hailong ,
  • Zhu Ning
Expand
  • Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051

Received date: 2019-04-25

  Revised date: 2019-07-05

  Online published: 2019-08-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21865020, 21362019), the Natural Science Foundation of Inner Mongolia (No. 2019LH02009), and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (2019).

Abstract

A method for the selective synthesis of o-halothiobenzamide by thiolysis reaction of o-halobenzonitrile with NaHS under the action of CO2 was explored. CO2/H2O/NaHS was used as a buffer system to provide a suitable pH environment, which would make HS- attack the nitrile-based carbon selectively to produce the corresponding o-halothiobenzamide. Moreover, the buffer system also provided the additionally required hydrogen atom for the thiolysis reaction of o-haloben-zonitrile with NaHS. Further studies have found that the CO2/Na2S·9H2O buffer system could also efficiently promote the thiolysis reaction of o-halobenzonitrile to form the corresponding o-halothiobenzamide. This synthetic method could be used to prepare different substituted o-halobenzonitriles, which is a simple, efficient and high atom-economic reaction.

Cite this article

Sang Guozhi , Feng Xuetong , Chen Juan , Li Shanshan , Li Zhuona , Li Xiao , Han Limin , Hong Hailong , Zhu Ning . Synthesis of o-Halothiobenzamide Derivatives from the Selective Thiolysis Reaction of o-Halobenzonitrile Mediated by CO2[J]. Chinese Journal of Organic Chemistry, 2019 , 39(12) : 3542 -3549 . DOI: 10.6023/cjoc201904063

References

[1] Wen, M.; Sun, P.-P.; Luo, X. Y.; Deng, W. P. Tetrahedron 2018, 74, 4168.
[2] Yu, L. S. H.; Dong, J. L.; Gao, Z. J.; Wang, J.; Xie, J. W. Synthesis 2018, 50, 1667.
[3] Han, T.; Wang, Y.; Li, H. L.; Luo, X. Y.; Deng, W. P. J. Org. Chem. 2018, 83, 1538.
[4] Alom, N. E.; Wu, F.; Li, W. Org. Lett. 2017, 19, 930.
[5] Wagle, S.; Adhikari, A. V.; Kumari, N. S. Phosphorus, Sulfur Silicon Relat. Elem. 2008, 183, 1285.
[6] Wipf, P.; Venkatraman, S. J. Org. Chem. 1996, 61, 8004.
[7] Sun, Y.; Wu, W.; Jiang, H. F. Eur. J. Org. Chem. 2014, 2014, 4239.
[8] Jagodziński, T. S. Chem. Rev. 2003, 103, 197.
[9] Rafiqul, I. M.; Shimada, K.; Aoyagi, S.; Takikawa, Y.; Kabuto, C. Heteroat. Chem. 2004, 15, 175.
[10] Peudru, F.; Lohier, J. F.; Gulea, M.; Reboul, V. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 220.
[11] Oschatz, S.; Brunzel, T.; Wu, X. F.; Langer, P. Org. Biomol. Chem. 2015, 13, 1150.
[12] Guo, W. S.; Gong, H.; Zhang, Y. A.; Wen, L. R.; Li, M. Org. Lett. 2018, 20, 6394.
[13] Zbruyev, O. I.; Stiasni, N.; Kappe, C. O. J. Comb. Chem. 2003, 5, 145.
[14] Okamoto, K.; Yamamoto, T.; Kanbara, T. Synlett 2007, 2687.
[15] Xu, K.; Li, Z.; Cheng, F.; Zuo, Z. Z.; Wang, T.; Wang, M.; Liu, L. Org. Lett. 2018, 20, 2228.
[16] Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2012, 14, 4274.
[17] Qu, Y. Y.; Li, Z. K.; Xiang, H. F.; Zhou, X. G. Adv. Synth. Catal. 2013, 355, 3141.
[18] Guntreddi, T.; Vanjari, R.; Singh, K. N. Org. Lett. 2014, 16, 3624.
[19] Nguyen, T. B.; Tran, M. Q.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2014, 16, 310.
[20] Kumar, S.; Vanjari, R.; Guntreddi, T.; Singh, K. N. Tetrahedron 2016, 72, 2012.
[21] Liu, J. M.; Zhao, S. S.; Yan, X. Y.; Zhang, Y. Y.; Zhao, S. F.; Zhuo, K. L.; Yue, Y. F. Asian J. Org. Chem. 2017, 6, 1764.
[22] Kurpil, B.; Kumru, B.; Heil, T.; Antonietti, M.; Savateev, A. Green Chem. 2018, 20, 838.
[23] Gisbert, P.; Pastor, I. M. Synthesis 2018, 50, 3031.
[24] Wei, J.; Li, Y.; Jiang, X. Org. Lett. 2016, 47, 340.
[25] Cao, X. T.; Qiao, L.; Zheng, H.; Yang, H. Y.; Zhang, P. F. RSC Adv. 2017, 8, 170.
[26] Mahammed, K. A.; Jayashankara, V. P.; Premsai Rai, N.; Mohana Raju, K.; Arunachalam, P. N. Synlett 2009, 2338.
[27] Abás, S.; Moens, U.; Escolano, C. Tetrahedron Lett. 2017, 58, 2768.
[28] Boys, M. L.; Downs, V. L. Synth. Commun. 2006, 36, 295.
[29] Nagl, M.; Panuschka, C.; Barta, A.; Schmid, W. Synthesis 2008, 4012.
[30] Cho, D.; Ahn, J.; De Castro, K. A.; Ahn, H.; Rhee, H. Tetrahedron 2010, 66, 5583.
[31] Li, S.-S.; Hong, H. L.; Han, L. M.; Zhang, T. M.; Wang, Y. L.; Zhu, N. Chin. J. Org. Chem. 2018, 38, 304(in Chinese). (李闪闪, 洪海龙, 韩利民, 张田苗, 王云龙, 竺宁, 有机化学, 2018, 38, 304.)
[32] Manaka, A.; Sato, M. Synth. Commun. 2005, 35, 761.
[33] Shi, J. G.; Yang, D. F. Corros. Prot. Petrochem. Ind. 2013, 30, 1(in Chinese). (史军歌, 杨德凤, 石油化工腐蚀与防护, 2013, 30, 1.)
[34] Chao, E.; Haffner, C. D.; Lambert, M. H.; Maloney, P. R.; Sierra, M. L.; Sternbach, D. D.; Sznaidman, M. L.; Willson, T. M.; Xu, H. E.; Gellibert, F. J. WO 2001000603, 2001.
[35] Bjorklund, M. D.; Coburn, M. D. J. Heterocycl. Chem. 1980, 17, 819.
[36] Crane, L. J.; Anastassiadou, M.; Stigliani, J.-L.; Baziard-Mouysset, G.; Payard, M. Tetrahedron 2004, 60, 5325.
[37] Fairfull, A. E. S.; Lowe, J. L.; Peak, D. A. J. Chem. Soc. 1952, 742.
[38] Nagl, M.; Panuschka, C.; Barta, A.; Schmid, W. Synthesis 2008, 4012.
[39] Shi, B.; Blake, A. J.; Lewis, W.; Campbell, I. B.; Judkins, B. D.; Moody, C. J. J. Org. Chem. 2009, 75, 152.
[40] Shiau, C. Y.; Chern, J. W.; Tien, J. H.; Liu, K. C. J. Heterocycl. Chem. 1989, 26, 595.
[41] Kaleta, Z.; Makowski, B. T.; Soós, T.; Dembinski, R. Org. Lett. 2006, 8, 1625.
[42] Pathak, U.; Pandey, L. K.; Tank, R. J. Org. Chem. 2008, 73, 2890.
Outlines

/