Progress in Co-Catalyzed C-H Amination

  • Sun Yiming ,
  • Ding Qifeng ,
  • Yu Yang ,
  • He Yide ,
  • Huang Fei
Expand
  • a College of Pharmacy, Nanjing Tech University, Nanjing 211816;
    b College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023;
    c School of Environmental and Engineering, Nanjing Tech University, Nanjing 211816

Received date: 2019-06-20

  Revised date: 2019-07-24

  Online published: 2019-08-07

Supported by

Project supported by the Postdoctoral Science Foundation of China (No. 2019M651809), the Jiangsu Synergetic Innovation Center for Advanced Bio-manufacture (Nos. XTE1850, XTC1810), the Postdoctoral Science Foundation of Anhui Province (No. 2018B252) and the Natural Science Foundation of Jiangsu Province (No. BK20160989).

Abstract

Amino compounds have a wide range of applications in the fields of organic chemistry, medicinal chemistry and functional materials. The efficient construction of C-N bonds has important research significance. Conventional amination reactions to construct C-N bonds require pre-functionalization of the substrate and inevitably produce quantitative halogenate by-products. The C-H amination reaction is directly based on hydrocarbons. The reaction has the advantages of "step" and "atomic" economy, in line with the green chemistry concept. Transition metal cobalt has the advantage of low toxicity and low cost. As a catalyst for C-H amination reaction, it exhibits its unique catalytic properties and attracts the attention of chemists. The research progress of cobalt-catalyzed C-H amination in recent years is summarized. At the same time, the challenges and development prospects of the research field are summarized and forecasted.

Cite this article

Sun Yiming , Ding Qifeng , Yu Yang , He Yide , Huang Fei . Progress in Co-Catalyzed C-H Amination[J]. Chinese Journal of Organic Chemistry, 2019 , 39(12) : 3363 -3374 . DOI: 10.6023/cjoc201906026

References

[1] (a) Ning, Z.; Tian, H. Chem. Commun. 2009, 5483.
(b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166.
(c) Liu, D.; Zhang, Z.; Zhang, H.; Wang, Y. Chem. Commun. 2013, 49, 10001.
(d) Mphahlele, M. J.; Paumo, H. K.; El-Nahas, A. M.; ElHendawy, M. M. Molecules 2014, 19, 795.
(e) Lücking, U. Angew. Chem., Int. Ed. 2013, 52, 9399.
(f) Liu, L.-T.; Chen, Y.-Y.; Zhang, A.-A.; Liu, X.; Zhang, L.; Bai, J.-R.; Li, H.; Mao, G.-L. Chin. J. Org. Chem. 2019, 39, 475(in Chinese). (刘澜涛, 陈莹莹, 张安安, 刘雪, 张丽, 白静茹, 李恒, 毛国梁, 有机化学, 2019, 39, 475.)
[2] (a) Dillard, R.; Yen, T.; Stark, P.; Pavey, D. J. Med. Chem. 1980, 23, 717.
(b) Zhou, H.; Chen, Z.-Y. Chin. J. Org. Chem. 2018, 38, 719(in Chinese). (周豪, 陈知远, 有机化学, 2018, 38, 719.)
[3] Bartoszyk, G.; Dooley, D.; Barth, H.; Hartenstein, J.; Satzinger, G. J. Pharm. Pharmacol. 1987, 39, 407.
[4] (a) Achelle, S.; Rodríguez-Lopez, J.; Guen, F. R. J. Org. Chem. 2014, 79, 7564.
(b) Witt, A.; Bergman, J. Curr. Org. Chem. 2003, 7, 659.
[5] (a) Strohriegl, P.; Grazulevicius, J. V. Adv. Mater. 2002, 14, 1439.
(b) Nishimura, K.; Kobota, T.; Inada, H.; Shirota, Y. J. Mater. Chem. 1991, 1, 897
[6] (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805.
(b) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125.
(c) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.
(d) Hartwig, J. F. Nature 2008, 455, 314.
[7] (a) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247.
(b) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498.
(c) Zhao, F.-Q.; Yang, Q.; Zhang, J.-J.; Shi, W.-M.; Hu, H.-H.; Liang, F.; Wei, W.; Zhou, S.-L. Org. Lett. 2018, 20, 7753.
(d) Gao, F.; Han, X.; Li, C.-P.; Liu, L.-J.; Cong, Z.-Q.; Liu, H. RSC Adv. 2018, 8, 32659.
(e) Yetra, S. R.; Shen, Z.-G.; Wang, H.; Ackermann, L. Beilstein J. Org. Chem. 2018, 14, 1546.
(f) Wang, F.; Jin, L.; Kong, L.-H.; Li, X.-W. Org. Lett. 2017, 19, 1812.
(g) Mei, R.-H.; Loup, J.; Ackermann, L. ACS Catal. 2016, 6, 793.
(h) Zhang, L.-B.; Zhang, S.-K.; Wei, D.-H.; Zhu, X.-J.; Hao, X.-Q.; Su, J.-H.; Niu, J.-L.; Song, M.-P. Org. Lett. 2016, 18, 1318.
(i) Sun, J.-S.; Liu, M.; Zhang, J.; Dong, L. J. Org. Chem. 2018, 83, 10555.
[8] (a) Kuhl, N.; Schröder, N.; Glorius, F. Adv. Synth. Catal. 2014. 356 1443.
(b) Song, G.; Li, X. Acc. Chem. Res. 2015. 48 1007.
(c) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017. 117, 8908.
(d) Hummel, J. R.; Boerth, J. A.; Ellman, J. A. Chem. Rev. 2017. 117, 9163.
[9] (a) Gandeepan, P.; Cheng, C. H. Acc. Chem. Res. 2015, 48, 1194.
(b) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4684.
(c) Prakash, S.; Muralirajan, K.; Cheng, C. H. Angew. Chem., Int. Ed. 2016, 55, 1844.
(d) Zhang, Z.-Z.; Liu, B.; Xu, J.-W.; Yan, S.-Y.; Shi, B.-F. Org. Lett. 2016, 18, 1776.
(e) Wei, D.-H.; Zhu, X.-J.; Niu, J.-L.; Song, M.-P. ChemCatChem 2016, 8, 1242.
(f) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040.
(g) Kim, H.; Chang, S. ACS Catal. 2016, 6, 2341.
(h) Gu, Z.-Y.; Ji, S.-J. Acta Chim. Sinica 2018, 76, 347(in Chinese). (顾正洋, 纪顺俊, 化学学报, 2018, 76, 347.)
(i) Zhang, J.-H.; Hao, X.-Q.; Wang, Z.-L.; Ren, C.-J.; Niu, J.-L.; Song, M.-P. Chin. J. Org. Chem. 2017, 37, 1237(in Chinese). (张家恒, 郝新奇, 王正龙, 任常久, 牛俊龙, 宋毛平, 有机化学, 2017, 37, 1237.)
(j) Cheng, B.; Lu, P.; Zhao, J.-J.; Lu, Z. Chin. J. Org. Chem. 2019, 39, 1704(in Chinese). (程彪, 陆鹏, 赵家金, 陆展, 有机化学, 2019, 39, 1704.)
[10] (a) Park, J.; Chang, S. Angew. Chem., Int. Ed. 2015, 54, 14103.
(b) Liang, Y.-J.; Liang, Y.-F.; Tang, C.-H.; Yuan, Y.-Z.; Jiao, N. Chem. Eur. J. 2015, 21, 16395.
(d) Wu, F.-F.; Zhao, Y.; Chen, W.-Z. Tetrahedron 2016, 72, 8004.
(e) Wang, F.; Wang, H.; Wang, Q.; Yu, S.-J.; Li, X.-W. Org. Lett. 2016, 18, 1306.
(g) Figg, T. M.; Park, S.; Park, J.; Chang, S.; Musaev, D. G. Organometallics 2014, 33, 4076.
(h) Liu, Y.; Xie, F.; Jia, A.-Q.; Li, X.-W. Chem. Commun. 2018, 54, 4345.
(i) Bera, S. S.; Sk, M. R.; Maji, M. S. Chem. Eur. J. 2019, 25, 1806.
(j) Yan, Q.-Q.; Xiao, T.-X.; Liu, Z.-X.; Zhang, Y.-H. Adv. Synth. Catal. 2016, 358, 2707.
(k) Cheng, H.-C.; Hernández, J. G.; Bolm, C. Adv. Synth. Catal. 2018, 360, 1.
(l) Borah, G.; Borah, P.; Patel, P. Org. Biomol. Chem. 2017, 15, 3854.
(m) Yu, X.-L.; Ma, Q.; Lv, S.-Y.; Li, J.; Zhang, C.; Hai, L.; Wang, Q.-T.; Wu, Y. Org. Chem. Front. 2017, 4, 2184.
(n) Shi, P.-F.; Wang, L.-L.; Chen, K.-H.; Wang, J.; Zhu, J. Org. Lett. 2017, 19, 2418.
[11] (a) Villanueva, O.; Weldy, N. M.; Blakey, S. B.; MacBeth, C. E. Chem. Sci. 2015, 6, 6672.
(b) Harden, J. D.; Ruppel, J. V.; Gao, G.-Y.; Zhang, X. P. Chem. Commun. 2007, 4644.
(c) Pang, S.-F.; Yuan, H.-K.; Wu, Y.-J.; Shi, F. J. Mol. Catal. 2017, 31, 105(in Chinese). (庞少峰, 袁航空, 吴亚娟, 石峰, 分子催化, 2017, 31, 105.)
(d) Wu, X.-S.; Yang, K.; Zhao, Y.; Sun, H.; Li, G.-G.; Ge, H.-B. Nat. Commun. 2015, 6, 6462.
(e) Lu, H.-J.; Li, C.-Q.; Jiang, H.-L.; Lizardi, C. L.; Zhang, X. P. Angew. Chem., Int. Ed. 2014, 53, 7028.
(f) Lu, H.-J.; Zhang, X. P. Chem. Soc. Rev. 2011, 40, 1899.
(g) Ragaini, F.; Penoni, A.; Gallo, E.; Tollari, S.; Gotti, C. L.; Lapadula, M.; Mangioni, E.; Cenini, S. Chem. Eur. J. 2003, 9, 249.
(h) Cenini, S.; Tollari, S.; Penoni, A.; Cereda C. J. Mol. Catal. 1999, 137, 135.
(i) Ruppel, J. V.; Kamble, R. M.; Zhang, X. P. Org. Lett. 2007, 9, 4889.
(j) Lu, H.-J.; Tao, J.; Jones, J. E.; Wojtas, L.; Zhang, X. P. Org. Lett. 2010, 12, 1248.
(k) Lu, H.-J.; Subbarayan, V.; Tao, J.; Zhang, X. P. Organometallics 2010, 29, 389.
(l) Cenini, S.; Gallo, E.; Penoni, A.; Ragainia, F.; Tollari, S. Chem. Commun. 2000, 2265.
(m) Tan, P.-W.; Mak, A. M.; Sullivan, M. B.; Dixon, D. J.; Seayad, J. Angew. Chem., Int. Ed. 2017, 56, 16550.
(n) Lu, H.-J.; Jiang, H.-L.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2010, 49, 10192.
[12] Patel, P.; Chang, S. ACS Catal. 2015, 5, 853.
[13] Wang, X.-M.; Lerchen, A.; Glorius, F. Org. Lett. 2016, 18, 2090.
[14] Wang, H.; Lorion, M.-M.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 10386.
[15] Huang, J.-p.; Huang, Y.-F.; Wang, T.; Huang, Q.; Wang, Z.-H.; Chen, Z.-Y. Org. Lett. 2017, 19, 1128.
[16] Du, C.; Li, P.-X.; Zhu, X.-J.; Han, J.-N.; Niu, J.-L.; Song, M.-P. ACS Catal. 2017, 7, 2810.
[17] Sauermann, N.; Mei, R.-H.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5090.
[18] (a) Parry, J. B.; Fu, N.; Lin, S. Synlett 2018, 29, 257.
(b) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
(c) Feng, R.; Smith, J. A.; Moeller, K. D. Acc. Chem. Res. 2017, 50, 2346.
(d) Jiao, K.-J.; Zhao, C.-Q.; Fang, P.; Mei, T.-S. Tetrahedron Lett. 2017, 58, 797.
(e) Hou, Z.-W.; Mao, Z.-Y.; Xu, H.-C. Synlett 2017, 28, 1867.
[19] Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. 2014, 356, 1491.
[20] Li, W.; Weng, L.; Jin, G. Inorg. Chem. Commun. 2004, 7, 1174.
[21] Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Chem. Commun. 2015, 51, 4659.
[22] Gao, X.-L.; Wang, P.; Zeng, L.; Tang, S.; Lei, A.-W. J. Am. Chem. Soc. 2018, 140, 4195.
[23] Wang, S.-B.; Gu, Q.; You, S.-L. J. Catal. 2018, 361, 393.
[24] Huang, D.-Y.; Yao, Q.-J.; Zhang, S.; Xu, X.-T.; Zhang, K.; Shi, B.-F. Org. Lett. 2019, 21, 951.
[25] Lu, H.-J.; Hu, Y.; Jiang, H.-L.; Wojtas, L.; Zhang, X. P. Org. Lett. 2012, 14, 5158.
[26] Luo, Y.-R. In Comprehensive Handbook of Chemical Bond Energies, Vol. 3, Ed.:Luo, Y.-R., Taylor & Francis Group, Boca Raton, 2007, p. 19.
[27] Barsu, N.; Rahman, M. A.; Sen, M.; Sundararaju B. Chem. Eur. J. 2016, 22, 9135.
[28] Lu, H.-J.; Lang, K.; Jiang, H.-L.; Wojtas, L.; Zhang, X. P. Chem. Sci. 2016, 7, 6934.
[29] Li, C.-Q.; Lang, K.; Lu, H.-J.; Hu, Y.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2018, 57, 16837.
[30] Fukagawa, S.; Kato, Y.; Tanaka, R.; Kojima, M.; Yoshino, T.; Matsunaga. S. Angew. Chem., Int. Ed. 2019, 58, 1153.
Outlines

/