Synthesis of 3-Hydroxy-3-heterocyclebutylamide Derivatives Using Carbamoylsilanes as an Amide Source

  • Zhang Pengpeng ,
  • Chen Wenwen ,
  • Feng Hua ,
  • Chen Jianxin
Expand
  • College of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi 041004

Received date: 2019-06-28

  Revised date: 2019-07-22

  Online published: 2019-08-07

Supported by

Project supported by the Foundation for Returness Overseas Scientists of Shanxi Province (No. 0713), the Natural Science Foundation of Shanxi Province (No. 2012011046-9), and the Natural Science Youth Foundation of Shanxi Province (No. 201701D221033).

Abstract

3-Hydroxy-3-heterocyclebutyl amide derivatives were directly synthesized in 56%~85% yields by nucleophilic addition of various carbamoylsilanes to oxetane-3-one or thietane-3-one in toluene under mild and catalyst-free conditions. This method will provide an efficient route for the synthesis of drugs containing four-membered heterocycles which have not additional stereocentres. The procedure can prepare 3-hydroxy-3-heterocyclebutyl tertiary, secondary and primary amides as well as having a stereocentre connecting with nitrogen atom by selecting different carbamoylsilanes. A comparison of the results obtained from reaction of various carbamoylsilanes indicated that the size of group on the amide group was an important factor in the addition reaction, which influenced on both the reaction time and yields. The reaction has the advantages of mild conditions, less by-products, good yield and simple post-treatment, and is a new method for the efficient preparation of 3-hydroxy-3-heterocycle butylamides.

Cite this article

Zhang Pengpeng , Chen Wenwen , Feng Hua , Chen Jianxin . Synthesis of 3-Hydroxy-3-heterocyclebutylamide Derivatives Using Carbamoylsilanes as an Amide Source[J]. Chinese Journal of Organic Chemistry, 2019 , 39(12) : 3560 -3566 . DOI: 10.6023/cjoc201906033

References

[1] Bull, J. A.; Croft, R. A.; Davis, O. A.; Doran, R.; Morgan, K. F. Chem. Rev. 2016, 116, 12150.
[2] Fujishima, T.; Nozaki, T.; Suenga, T. Bioorg. Med. Chem. 2013, 21, 5209.
[3] Wuitschik, G.; Rogers-Evans, M.; Buckl, A.; Bernasconi, M.; Marki, M.; Godel, T.; Fischer, H.; Wagner, B.; Parrilla, I.; Schuler, F.; Schneider, J.; Alker, A.; Schweizer, W. B.; Muller, K.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47, 4512.
[4] Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Muller, K.; Carreira, E. M. Angew. Chem., Int. Ed. 2010, 49, 9052.
[5] Cheong, J. E.; Zaffagni, M.; Chung, I.; Xu, Y.-J.; Wang, Y.-Q.; Jernigan, F. E.; Zetter, B. R.; Sun, L. Eur. J. Med. Chem. 2018, 114, 372.
[6] Rowland, A. T.; Drawbaugh, R. S.; Dalton, J. R. J. Org. Chem. 1977, 42, 487.
[7] Martínez-Sáez, N.; Sun, S.; Oldrini, D.; Sormanni, P.; Boutureira, O.; Carboni, F.; Compañón, I.; Deery, M. J.; Vendruscolo, M.; Corzana, F.; Adamo, R.; Bernardes, G. J. L. Angew. Chem., Int. Ed. 2017, 129, 15159.
[8] Wuitschik, G.; Carreira, E. M.; Wagner, B.; Fischer, H.; Parrilla, I.; Schuler, F.; Rogers-Evans, M.; Muller, K. J. J. Med. Chem. 2010, 53, 3227.
[9] Beadle, J. D.; Knuhtsen, A.; Hoose, A.; Raubo, P.; Jamieson, A. G. Org. Lett. 2017, 19, 3303.
[10] Geden, J. V.; Beasley, B. O.; Clarkson, G. J.; Shipman, M. J. Org. Chem. 2013, 78, 12243.
[11] Dejaegher, Y.; Kuz'menok, N. M.; Zvonok A. M.; Kimpe, N. D. Chem. Rev. 2002, 102, 29.
[12] Mikami, K.; Aikawa, K.; Aida, J. Synlett 2011, 2719.
[13] Sharma, R.; Williams, L. J. Org. Lett. 2013, 15, 2202.
[14] Kazakova, O. B.; Khusnutdinova, E. F.; Lobov, A. N.; Zvereva, T. I.; Suponitskii, K. Y. Chem. Nat. Compd. 2011, 46, 897.
[15] Hamill, R.; Jones, B.; Pask, C. M.; Sridharan, V. Tetrahedron Lett. 2019, 60, 1126.
[16] Beasley, B. O.; Clarkson, G. J.; Shipman, M. Tetrahedron Lett. 2012, 53, 2951.
[17] Kozikowski, A. P.; Fauq, A. H. Synlett 1991, 783.
[18] Suenega, T.; Fujishima, T. Tetrahedron 2018, 74, 1461.
[19] Roesner, S.; Saunders, G. J.; Wilkening, I.; Jayawant, E.; Geden, J. V.; Kerby, P.; Dixon, A. M.; Notman, R.; Shipman, M. Chem. Sci. 2019, 10, 2465.
[20] Yao, Y.; Li, W.-T.; Chen, J.-X. Chin. J. Org. Chem. 2014, 34, 2124(in Chinese). (姚远, 李伟东, 陈建新, 有机化学, 2014, 34, 2124.)
[21] Yao, Y.; Li, W.-T.; Tong, W.-T.; Chen, J.-X. Chin. J. Org. Chem. 2015, 35, 223(in Chinese). (姚远, 李伟东, 仝文婷, 陈建新, 有机化学, 2015, 35, 223.)
[22] Chen, X.-J.; Chen, J.-X. Mendeleev Commun. 2013, 23, 106.
[23] Li, W.-D.; Han, S.-H.; Liu, Y.-H.; Chen, J.-X. Chin. J. Org. Chem. 2017, 37, 2423(in Chinese). (李伟东, 韩生华, 刘艳红, 陈建新, 有机化学, 2017, 37, 2423.)
[24] Zhang, W.-J.; Cao, P.; Guo, Q.-L.; Chen, J.-X. Curr. Org. Synth. 2017, 14, 1067.
[25] Ma, F.; Liu, H.; Chen, J.-X. Tetrahedron Lett. 2016, 57, 5246.
[26] Han, Y.-L.; Tong, W.-T.; Liu, H.; Chen, J.-X. Chin. J. Org. Chem. 2018, 38, 1993(in Chinese). (韩宇玲, 仝文婷, 刘慧, 陈建新, 有机化学, 2018, 38, 1993.)
[27] Tong, W.-T.; Cao, P.; Liu, Y.-H. J. Org. Chem. 2017, 82, 11603.
[28] Soeta, T.; Kojima, Y.; Ukaji, Y.; Inomata, K. Org. Lett. 2010, 12, 4341.
[29] Wang, Y.-K.; Yin, H.; Tang, X.-F.; Wu, Y.-F.; Meng, Q.-W.; Gao, Z.-X. J. Org. Chem. 2016, 81, 7042.
[30] Zhang P.-P.; Han, S.-H.; Chen, J.-X. Mendeleev Commun. 2019, 29, 326.
[31] Carbamoylsilanes were prepared as reported, see:Cunico, R. F.; Chen, J.-X. Synth. Commun. 2003, 33, 1963.
[32] Reeves, J. T.; Lorenc, C.; Camara, K.; Li, Z.-B.; Lee, H. W.; Busacca, C. A.; Senanayake, C. H. J. Org. Chem. 2014, 79, 5895.
[33] Reeves, J. T.; Tan, Z.-L.; Herbage, M. A.; Han, Z. S.; Marsini, M. A.; Li, Z.-B.; Li, G.-S.; Xu, Y.-B.; Fandrick, K. R.; Gonnella, N. C.; Campbell, S.; Ma, S.-L.; Grinberg, N.; Lee, H. W.; Lu, B. Z.; Senanayake, C. H. J. Am. Chem. Soc. 2013, 135, 5565.
[34] Schollkopf, U.; Beckhaus, H. Angew. Chem., Int. Ed. Engl. 1976, 15, 293.
[35] Lang, Q.-W.; Hu, X.-N.; Huang, P.-Q. Sci. China Chem. 2016, 59, 1638.
[36] Stopka, T.; Adler, P.; Hagu, G.; Zhang, H.-Q.; Tona, V.; Maulide, N. Synthesis 2019, 51, 194.
[37] Huang, P.-Q. Acta Chim. Sinica 2018, 76, 357(in Chinese). (黄培强, 化学学报, 2018, 76, 357.)
[38] Davies, S. G.; Ichihara, O. Tetrahedron Lett. 1998, 39, 6045.
[39] Cunico, R. F.; Motta, A. R. Org. Lett. 2005, 7, 771.
Outlines

/