Recent Advances in Aqueous Phase Visible Light Catalytic Reactions

  • Chen Dan ,
  • Liu Jianchen ,
  • Zhang Xinyuan ,
  • Jiang Hezhong ,
  • Li Jiahong
Expand
  • School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031

Received date: 2019-07-08

  Revised date: 2019-08-01

  Online published: 2019-08-07

Supported by

Project supported by the National Natural Science Foundation of China (No. 21901216), the Fundamental Research Funds for the Central Universities (No. 2682017CX091) and the 13th Personalized Experimental Project and the Student Research Training Program (Nos. GX201913085, GX201913108).

Abstract

Water is a medium for reaction in living organisms, which is safe, cheap and easy to obtain, and visible light is a clean and renewable natural resource. Exploring the controllable free radical reaction under the illumination condition in water and developing a simple, green and efficient synthesis method not only conform to the current green chemistry theme, but also have an important scientific significance in theory and practical application. The classification and review of visible light catalysis in aqueous phase have been carried out in recent years, and the corresponding mechanisms are discussed.

Cite this article

Chen Dan , Liu Jianchen , Zhang Xinyuan , Jiang Hezhong , Li Jiahong . Recent Advances in Aqueous Phase Visible Light Catalytic Reactions[J]. Chinese Journal of Organic Chemistry, 2019 , 39(12) : 3353 -3362 . DOI: 10.6023/cjoc201907014

References

[1] Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.
[2] Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
[3] Stillinger, F. H. Nature (London) 1999, 401, 850.
[4] (a) Simon, M.-O.; Li, C.-J. Chem. Soc. Rev. 2012, 41, 1415.
(b) Zhou, Z.; Duan; J.; Mu, X.; Xiao, S. Chin. J. Org. Chem. 2018, 38, 585(in Chinese). (周曌, 段建凤, 穆小静, 肖尚友, 有机化学, 2018, 38, 585.)
[5] Anastas, P. T. Chem. Rev. 2007, 107, 2167.
[6] (a) Itami, K.; Yoshida, J.-I. Chem. Rec. 2002, 2, 213.
(b) Li, C.-J.; Meng, Y.; Yi, X.-H.; Ma, J.; Chan, T.-H. J. Org. Chem. 1997, 62, 8632.
[7] Nicolaou, K. C.; Xu, H.; Wartmann, M. Angew. Chem., Int. Ed. 2005, 44, 756.
[8] Bu, M.-J.; Lu, G.-P.; Jiang, J.; Cai, C. Catal. Sci. Technol. 2018, 8, 3728.
[9] Huang, Y.; Wei, W. Prog. Chem. 2018, 30, 1819(in Chinese). (黄依铃, 魏文廷, 化学进展, 2018, 30, 1819.)
[10] Fujishima, A.; Honda, K. Nature (London) 1972, 238, 37.
[11] (a) Fan, X.-Z.; Rong, J.-W.; Wu, H.-L.; Zhou, Q.; Deng, H.-P.; Tan, J. D.; Xue, C.-W.; Wu, L.-Z.; Tao, H.-R.; Wu, J. Angew. Chem., Int. Ed. 2018, 57, 8514.
(b) Jiang, X.; Zhang, M.-M.; Xiong, W.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 2402.
(c) Ye, S.; Li, X.; Xie, W.; Wu, J. Eur. J. Org. Chem. 2019 (DOI:10.1002/ejoc.201900396).
(d) Cai, B.-G.; Xuan, J.; Xiao, W.-J. Sci. Bull. 2019, 64, 337.
(e) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China, Chem. 2018, 62, 24.
(f) Chen, J.-R.; Yan, D.-M.; Wei, Q.; Xiao, W.-J. ChemPhotoChem 2017, 1, 148.
(g) Ren, L.; Ran, M.; He, J.; Qian, Y.; Yao, Q. Chin. J. Org. Chem. 2019, 39, 1583(in Chinese). (任林静, 冉茂刚, 何佳芯, 钱燕, 姚秋丽, 有机化学, 2019, 39, 1583.)
(h) Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun. 2019, 55, 5408.
(i) Wang, L.; Bao, P.; Liu, W.; Liu, S.; Hu, C.; Yue, H.; Yang, D.; Wei, W. Chin. J. Org. Chem. 2018, 38, 3189(in Chinese). (王雷雷, 鲍鹏丽, 刘维维, 刘思彤, 胡昌松, 岳会兰, 杨道山, 魏伟, 有机化学, 2018, 38, 3189.)
[12] Zhang, W.-M.; Dai, J.-J.; Xu, J.; Xu, H.-J. J. Org. Chem. 2017, 82, 2059.
[13] (a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044.
(b) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.-Eur. J. 2014, 20, 3874.
(c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(d) Qiu, G.; Li, Y.; Wu, J. Org. Chem. Front. 2016, 3, 1011.
(e) Reckenthaeler, M.; Griesbeck, A. G. Adv. Synth. Catal. 2013, 355, 2727.
(f) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
[14] Li, L.; Huang, M.; Liu, C.; Xiao, J. C.; Chen, Q. Y.; Guo, Y.; Zhao, Z. G. Org. Lett. 2015, 17, 4714.
[15] Zhang, M.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C. Org. Chem. Front. 2018, 5, 749.
[16] Hou, H.; Zhu, S.; Pan, F.; Rueping, M. Org. Lett. 2014, 16, 2872.
[17] (a) Allavena, M. Mol. Eng. 1995, 5, 403.
(b) Head-Gordon, T.; Hura, G. Chem. Rev. 2002, 102, 2651.
[18] Jayaraman, M.; Batista, M. T.; Manhas, M. S.; Bose, A. K. Heterocycles 1998, 48, 1100.
[19] Zou, Y.-Q.; Guo, W.; Liu, F.-L.; Lu, L.-Q.; Chen, J.-R..; Xiao, W.-J. Green Chem. 2014, 16, 3787.
[20] Jana, S.; Verma, A.; Kadu, R.; Kumar, S. Chem. Sci. 2017, 8, 6633.
[21] Wei, W.; Bao, P.; Yue, H.; Liu, S.; Wang, L.; Li, Y.; Yang, D. Org. Lett. 2018, 20, 5291.
[22] Zhang, M.; Yuan, X. A.; Zhu, C.; Xie, J. Angew. Chem., Int. Ed. 2019, 58, 312.
[23] (a) Converso, A.; Burow, K.; Marzinzik, A.; Sharpless, K. B.; Finn, M. G. J. Org. Chem. 2001, 66, 4386.
(b) Converso, A.; Burow, K.; Marzinzik, A.; Sharpless, B.; Finn, M. G. J. Org. Chem. 2004, 69, 7336.
(c) Yudin, A. Aziridines and Epoxides in Organic Synthesis, Wiley-VCH Verlag GmbH & Co. KGaA, 2006, p. 492.
[24] (a) Breslow, R.; Maitra, U.; Rideout, D. Tetrahedron Lett. 1983, 24, 1901.
(b) Grieco, P. A.; Garner, P.; He, Z.-M. Tetrahedron Lett. 1983, 24, 1897.
(c) Grieco, P. A.; Yoshida, K.; Garner, P. J. Org. Chem. 1983, 48, 3137.
(d) Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7816.
[25] Lindstróm, U. M. Chem. Rev. 2002, 102, 2751.
[26] Fang, J.; Li, L.; Yang, C.; Chen, J.; Deng, G.-J.; Gong, H. Org. Lett. 2018, 20, 7308.
[27] Zhang, M.; Fu, Q.-Y.; Gao, G.; He, H.-Y.; Zhang, Y.; Wu, Y.-S.; Zhang, Z.-H. ACS Sustainable Chem. Eng. 2017, 5, 6175.
[28] Liu, Q.; Wang, L.; Yue, H.; Li, J.-S.; Luo, Z.; Wei, W. Green Chem. 2019, 21, 1609.
[29] (a) Cobo, I.; Matheu, M. I.; Castillór, S.; Boutureira, O.; Davis, B. G. Org. Lett. 2012, 14, 1728.
(b) Ganesamoorthy, S.; Shanmugasundaram, K.; Karvembu, R. J. Mol. Catal. A: Chem. 2013, 371, 118.
(c) Wallow, T. I.; Novak, B. M. J. Am. Chem. Soc. 1991, 113, 7411.
[30] (a) Lysen, M.; Koehler, K. Synthesis 2006, 692.
(b) Soomro, S. S.; Roehlich, C.; Koehler, K. Adv. Synth. Catal. 2011, 353, 767.
(c) Xie, L.-Y.; Jiang, L.-L.; Tan, J.-X.; Wang, Y.; Xu, X.-Q.; Zhang, B.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019.
[31] (a) Solodenko, W.; Schoen, U.; Messinger, J.; Glinschert, A.; Kirschning, A. Synlett 2004, 1699.
(b) Zhang, J.; Yang, F.; Ren, G.; Mak, T. C. W.; Song, M.; Wu, Y. Ultrason. Sonochem. 2007, 15, 115.
(c) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3683.
[32] Xue, D.; Jia, Z. H.; Zhao, C. J.; Zhang, Y. Y.; Wang, C.; Xiao, J. Chem.-Eur. J. 2014, 20, 2960.
[33] You, G.; Wang, K.; Wang, X.; Wang, G.; Sun, J.; Duan, G.; Xia, C. Org. Lett. 2018, 20, 4005.
[34] Long, B.; Ding, Z.; Wang, X. ChemSusChem 2013, 6, 2074.
[35] Bu, M.-J.; Cai, C.; Gallou, F.; Lipshutz, B. H. Green Chem. 2018, 20, 1233.
[36] Zhang, Z.; Zhao, Z.; Hou, Y.; Wang, H.; Li, X.; He, G.; Zhang, M. Angew. Chem., Int. Ed. 2019, 58, 8862.
[37] Zou, L.; Li, P.; Wang, B.; Wang, L. Green Chem. 2019, 21, 3362.
[38] Wang, H.; Li, W. G.; Zeng, K.; Wu, Y. J.; Zhang, Y.; Xu, T. L.; Chen, Y. Angew. Chem., Int. Ed. 2019, 58, 561.
Outlines

/