Visible-Light-Induced α-C(sp3)—H Amination Reactions of Tertiary Amines

  • Zhao Yating ,
  • Zeng Junjie ,
  • Xia Wujiong
Expand
  • a College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000;
    b State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology[Shenzhen], Shenzhen, Guangdong 518055

Received date: 2019-07-02

  Revised date: 2019-08-20

  Online published: 2019-09-05

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21901141, 21672047), and the Start-up Funds of Quzhou University (No. BSYJ201714).

Abstract

Herein, the visible-light-induced α-C(sp3)—H amination reactions of tertiary amines were reported. By using readily available 1,3-dioxoisoindolin-2-yl benzoate as precursor of N-radical and blue LEDs as green and sustainable energy source, the α-C(sp3)—H bonds of various N,N-dimethylaniline derivatives were aminated directly. Based on radical trapping experiment and documented literature, a mechanism involving radicals coupling was proposed. This method featured in mild reaction conditions and good functional group tolerance, which provides a simple and practical protocol to the modification of tertiary amines.

Cite this article

Zhao Yating , Zeng Junjie , Xia Wujiong . Visible-Light-Induced α-C(sp3)—H Amination Reactions of Tertiary Amines[J]. Chinese Journal of Organic Chemistry, 2020 , 40(1) : 133 -139 . DOI: 10.6023/cjoc201907002

References

[1] (a) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
(b) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
(c) Song, G. Y.; Wang, F.; Li, X. W. Chem. Soc. Rev. 2012, 41, 3651.
(d) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040.
[2] (a) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Soc. Rev. 2016, 45, 2044.
(b) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069.
(c) Kärkäs, M. D. ACS Catal. 2017, 7, 4999.
(d) Zhao, Y.; Xia, W. Chem. Soc. Rev. 2018, 47, 2591.
[3] (a) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
(b) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433.
(c) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. Chin. Chem. 2019, 62, 24.
[4] For selected examples, see:(a) Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464.
(b) Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 13445.
(c) Mitkina, T.; Stanglmair, C.; Setzer, W.; Gruber, M.; Kisch, H.; König, B. Org. Biomol. Chem. 2012, 10, 3556.
(d) Pan, Y.; Kee, C. W.; Chen, L.; Tan, C.-H. Green Chem. 2011, 13, 2682.
[5] For selected examples, see:(a) Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C. Chem. Commun. 2011, 47, 2360.
(b) Zhao, G.; Yang, C.; Guo, L; Sun, H.; Chen, C.; Xia, W. Chem. Commun. 2012, 48, 2337.
[6] For selected examples, see:(a) Pan, Y.; Wang, S.; Kee, C. W.; Dubuisson, E.; Yang, Y.; Loh, K. P.; Tan, C.-H. Green Chem. 2011, 13, 3341.
(b) Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47, 12709.
(c) Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett. 2012, 14, 94.
(d) Franz, J. F.; Kraus, W. B.; Zeitler, K. Chem. Commun. 2015, 51, 8280.
(e) Pacheco, O. J. C.; Lipp, A.; Nauth, A. M.; Acke, F.; Dietz, J. P.; Opatz, T. Chem. Eur. J. 2016, 22, 5409.
(f) Zhou, Q.; Liu, D.; Xiao, W.; Lu, L. Acta Chim. Sinica 2017, 75, 110(in Chinese). (周泉泉, 刘丹, 肖文精, 陆良秋, 化学学报, 2017, 75, 110.)
[7] (a) Zhong, J.-J.; Meng, Q.-Y.; Liu, B.; Li, X.-B.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Li, Z.-J.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2014, 16, 1988.
(b) Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47, 8679.
(c) Zhang, P.; Xiao, T.; Xiong, S.; Dong, X.; Zhou, L. Org. Lett. 2014, 16, 3264.
(d) Liu, X.; Ye, X.; Bureš, F.; Liu, H.; Jiang, Z. Angew. Chem. Int. Ed. 2015, 54, 11443.
(e) Li, W.; Duan, Y.; Zhang, M.; Cheng, J.; Zhu, C. Chem. Commun. 2016, 52, 7596.
(f) Xu, G.-Q.; Xu. J.-T.; Feng, Z.-T.; Liang, H.; Wang, Z.-Y.; Qin, Y.; Xu, P.-F. Angew. Chem., Int. Ed. 2018, 57, 5110.
[8] Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. J. Am. Chem. Soc. 1991, 113, 9401.
[9] Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 901.
[10] (a) Fu, C.-M.; Shang, R.; Zhao, B.; Fu, Y. Science 2019, 363, 1429.
(b) Liu, X.; Liu, Y.; Chai, G.; Qiao, B.; Zhao, X.; Jiang, Z. Org. Lett. 2018, 20, 6298.
(c) Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419.
[11] Allen, L. J.; Cabrera, P. J.; Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607.
[12] (a) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Angew. Chem., Int. Ed. 2016, 55, 1872.
(b) Zhang, P.; Xiao, T.; Xiong, S.; Dong, X.; Zhou, L. Org. Lett. 2014, 16, 3264.
(c) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
[13] Ratnikov, M. O.; Doyle, M. P. J. Am. Chem. Soc. 2013, 135, 1549.
[14] Kiyokawa, K.; Kosaka, T.; Kojima, T.; Minakata, S. Angew. Chem., Int. Ed. 2015, 54, 13719.
[15] Heine, H. W.; Winstead, M. B.; Blair, R. P. J. Am. Chem. Soc. 1956, 78, 672.
[16] Singh, S. K.; Chandna, N.; Jain, N. Org. Lett. 2017, 19, 1322.
Outlines

/