Synthesis and Catalytic Property of New Aminophosphino Ruthenium Carbonyl Complexes

  • Fang Xiaolong ,
  • Zhang Min ,
  • Duan Ning ,
  • Wang Xin ,
  • Zhu Hongping
Expand
  • a Key Laboratory of Micro-nano Powder and Advanced Energy Materials of Anhui Higher Education Institutes, College of Chemistry and Materials Engineering, Chizhou University, Chizhou, Anhui 247000;
    b State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005

Received date: 2019-06-18

  Revised date: 2019-08-22

  Online published: 2019-09-12

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21802010, 21673191), the Natural Science Foundation of Anhui Province (No. 1808085QB48) and the Starting Grants for Young Teachers of Chizhou University (No. 2018YJRC001).

Abstract

New carbonyl ruthenium complexes (μ-o-PPh2C6H4NH)Ru3(μ-H)(CO)9 (2), (o-PPh2C6H4NH)2Ru(CO)2 (3) and (μ-o-PPh2C6H4NMe2)2Ru(CO)3 (4) have been successfully synthesized by using ruthenium carbonyl and o-PPh2C6H4NR2 (R=H, Me) ligand. The three complexes have all been characterized by NMR and IR spectroscopies, elemental analysis and X-ray crystallography. Complexes 2 and 4 could catalyze the hydrogenation of benzaldehyde into benzyl alcohol. However, complex 3 showed no activity. This study reveals a correlation between structure and catalytic property, where the possible deactivation mode for the hydrogenation reaction using the aminophosphino ruthenium catalyst is discussed in view of the experimental work.

Cite this article

Fang Xiaolong , Zhang Min , Duan Ning , Wang Xin , Zhu Hongping . Synthesis and Catalytic Property of New Aminophosphino Ruthenium Carbonyl Complexes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(1) : 226 -231 . DOI: 10.6023/cjoc201906022

References

[1] (a) Dub, P. A.; Ikariya, T. ACS Catal. 2012, 2, 1718.
(b) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res. Dev. 2014, 18, 289.
(c) Pritchard, J.; Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2015, 44, 3808.
(d) Zhang, Y. W.; Chen, Y. L.; Fang, X. L.; Yuan, Y. Z.; Zhu, H. P. Chin. J. Org. Chem. 2017, 37, 2275(in Chinese). (张亦伟, 陈艺林, 方霄龙, 袁友珠, 朱红平, 有机化学, 2017, 37, 2275.)
[2] (a) Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490.
(b) Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473.
(c) Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 13041.
(d) Zhao, B.; Han. Z.; Ding. K. Angew. Chem., Int. Ed. 2013, 52, 4744.
(e) Tan, X.; Wang, Y.; Liu, Y.; Wang, F.; Shi, L.; Lee, K. H.; Lin, Z.; Lv, H.; Zhang, X. Org. Lett. 2015, 17, 454.
[3] (a) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2006, 45, 1113.
(b) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.
(c) Gunanathan, C.; Milstein, D. Acc. Chem. Res. 2011, 44, 588.
(d) Li, W.; Xie, J. H.; Yuan, M. L.; Zhou, Q. L. Green Chem. 2014, 16, 4081.
[4] (a) Hanton, M. J.; Tin, S.; Boardman, B. J.; Miller, P. J. Mol. Catal. A:Chem. 2011, 346, 70.
(b) vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz, M.; Hölscher, M.; Coetzee, J.; Cole-Hamilton, D. J.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2014, 136, 13217.
[5] (a) Fang, X.; Zhang, C.; Chen, J.; Zhu, H.; Yuan, Y. RSC Adv. 2016, 6, 45512.
(b) Fang, X.; Sun, M.; Zheng, J.; Li, B.; Ye, L.; Wang, X.; Cao, Z.; Zhu, H.; Yuan, Y. Sci. Rep. 2017, 7, 3961.
(c) Fang, X.; Li, B.; Zheng, J.; Wang, X.; Zhu, H.; Yuan, Y. Dalton Trans. 2019, 48, 2290.
[6] Fang, X.; Duan, N.; Zhang, M.; Zhang, C.; Liu, R.; Zhu, H. P. Chin. J. Org. Chem. 2019, 39, 1450(in Chinese). (方霄龙, 段宁, 章敏, 张春燕, 刘睿, 朱红平, 有机化学, 2019, 39, 1450.)
[7] Mason, R.; Rae, A. I. M. J. Chem. Soc. A 1968, 778.
[8] (a) Deeming, A. J.; Martin, C. M. Angew. Chem., Int. Ed. 1998, 37, 1691.
(b) Hanif, K. M.; Hursthouse, M. B.; Kabir, S. E.; Malik, K. M. A.; Rosenberg, E. J. Organomet. Chem. 1999, 580, 60.
(c) Tan, X.; Li, B.; Xu, S.; Song, H.; Wang, B. Organometallics 2011, 30, 2308.
[9] Gong, P.; Wu, B.; Liu, S.; Wang, D. Chin. J. Inorg. Chem. 2004, 20, 37(in Chinese). (宫培军, 吴秉芳, 刘树堂, 王丁泽, 无机化学学报, 2004, 20, 37.)
[10] Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.
[11] (a) El-Amouri, H.; Bahsoun, A. A.; Fischer, J.; Osborn, J. A. Angew. Chem., Int. Ed. 1987, 26, 1169.
(b) Holland, G. F.; Ellis, D. E.; Tyler, D. R.; Gray, H. B.; Trogler, W. C. J. Am. Chem. Soc. 1987, 109, 4276.
[12] (a) Van der Sluys, L. S.; Kubas, G. J.; Caulton, K. G. Organometallics 1991, 10, 1033.
(b) Chen, Y. Z.; Chan, W. C.; Lau, C. P.; Chu, H. S.; Lee, H. L.; Jia, G. Organometallics 1997, 16, 1241.
[13] (a) Herd, O.; Heßler, A.; Hingst, M.; Tepper, M.; Stelzer, O. J. Organomet. Chem. 1996, 522, 69.
(b) Richard, V.; Ipouck, M.; Mérel, D. S.; Gaillard, S.; Whitby, R. J.; Witulski, B.; Renaud, J. L. Chem. Commun. 2014, 50, 593.
Outlines

/