A Green and Scalable Cobalt(II)-Catalyzed Oxidation of 2-Ethyl-3-methylpyrazine

  • Chen Jingjing ,
  • Wang Yingshu ,
  • Yu Jun ,
  • Cheng Jiajia ,
  • Zheng Huidong
Expand
  • a College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108;
    b College of Chemical Engineering, Fuzhou University, Fuzhou 350108;
    c College of Chemistry, Fuzhou University, Fuzhou 350108

Received date: 2019-08-01

  Revised date: 2019-09-02

  Online published: 2019-09-18

Supported by

Project supported by the National Natural Science Foundation of China (No. 21476049), the Regional Development Project of Fujian Province (No. 2016H4023), the University-Industry Cooperation Project of Fujian Province (No. 2019H6010), the Industrial Technology Joint Innovation Special Project of Fujian Province (No. FG-2016005) and the Program for New Century Excellent Talents in University of Fujian Province (No. HG2017-17).

Abstract

A green and scalable oxidation of 2-ethyl-3-methylpyrazine (EMP) by tert-butylhydroperoxide was investigated with a catalytic system of cobalt(II) and N-containing ligand. The effects of catalyst, ligand, solvent and temperature were compared, and the catalysis system of cobalt(II) acetylacetonate and 2,2-bipyridine gave the highest selectivity. Mechanistic study of this catalysis system suggested that the oxidation of EMP followed a free radical oxidation pathway, and a homogeneous reaction kinetics model was established to calculate the reaction rate constant and activation energy. The scale-up of the oxidation system was performed to check the scalability of the oxidation reaction, and the temperature control of the system was the key part of the process.

Cite this article

Chen Jingjing , Wang Yingshu , Yu Jun , Cheng Jiajia , Zheng Huidong . A Green and Scalable Cobalt(II)-Catalyzed Oxidation of 2-Ethyl-3-methylpyrazine[J]. Chinese Journal of Organic Chemistry, 2020 , 40(1) : 78 -83 . DOI: 10.6023/cjoc201908001

References

[1] Mookherjee, B. D.; Klaiber, E. M. J. Org. Chem. 1972, 37, 511.
[2] Cooper, J. C.; Luo, C.; Kameyama, R.; Humbeck, J. F. van J. Am. Chem. Soc. 2018, 140, 1243.
[3] Moghaddam, F. M.; Mirjafary, Z.; Saeidian, H.; Javan, M. J. Synlett 2008, 892.
[4] Sterckx, H.; De Houwer, J.; Mensch, C.; Caretti, I.; Tehrani, K. A.; Herrebout, W. A.; Van Doorslaer, S.; Maes, B. U. W. Chem. Sci. 2016, 7, 346.
[5] Yoshino, Y.; Hayashi, Y.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 1997, 62, 6810.
[6] Wolt, J. J. Org. Chem. 1975, 40, 1178.
[7] Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439.
[8] Maison, W.; Weidmann, V. Synthesis 2013, 45, 2201.
[9] Marwah, P.; Marwah, A.; Lardy, H. A. Green Chem. 2004, 6, 570.
[10] Nakada, M.; Nakamura, A. Synthesis 2013, 45, 1421.
[11] Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800.
[12] Ren, L.; Gao, S. Chin J. Org. Chem. 2017, 37, 983(in Chinese). (任兰会, 高爽, 有机化学, 2017, 37, 983.)
[13] Arsenou, E. S.; Koutsourea, A. I.; Fousteris, M. A.; Nikolaropoulos, S. S. Steroids 2003, 5, 407.
[14] Jurado-Gonzalez, M.; Sullivan, A. C.; Wilson, J. R. H. Tetrahedron Lett. 2003, 22, 4283.
[15] Cao, H.; Zhu, B.; Yang, Y.; Xu, L.; Yu, L.; Xu, Q. Chin J. Catal. 2018, 39, 899.
[16] Liu, J.; Zhang, X.; Yi, H.; Liu, C.; Liu, R.; Zhang, H.; Zhuo, K.; Lei, A. Angew. Chem. Int. Ed. 2015, 54, 1261.
[17] Hruszkewycz, D. P.; Miles, K. C.; Thiel, O. R.; Stahl, S. S. Chem. Sci. 2017, 8, 1282.
[18] Turra, N.; Neuenschwander, U.; Baiker, A.; Peeters, J.; Hermans, I. Chem. Eur. J. 2010, 16, 13226.
[19] Serra, S. Eur. J. Org. Chem. 2015, 29, 6472.
[20] Tan, J.; Zheng, T.; Yu, Y.; Xu, K. RSC Adv. 2017, 7, 15176.
[21] Wu, X. F.; Gong, J. L.; Qi, X. Org. Biomol. Chem. 2014, 12, 5807.
[22] Yu, Y.; Humeidi, R.; Alleyn, J. R.; Doyle, M. P. J. Org. Chem. 2017, 82, 8506.
[23] Zhang, W.; Wei, Q.; Lan, L.; Wu, A.; Yin, X.; Shen, L. Monatsh. Chem. 2016, 148, 357.
[24] Derdau, V. Tetrahedron Lett. 2004, 45, 8889.
[25] Rubottom, G. M.; Evain, E. J. Tetrahedron 1990, 46, 5055.
[26] Liu, M.; Chen, X.; Chen, T.; Yin, S. F. Org. Biomol. Chem. 2017, 15, 2507.
[27] Haber, F.; Weiss, J. P. R. Soc. A 1934, 147, 332.
[28] Goldstein, S.; Meyerstein, D. Acc. Chem. Res. 1999, 32, 547.
[29] Koppenol, W. H. Redox Rep. 2013, 6, 229.
Outlines

/