Catalytic Enantioselective Syntheses of Functionalized 3,3-Spirocyclopropyl Oxindoles and Vinylcyclopropanes via Ammonium Ylides Generated from α-Bromoketones

  • Luo Jinghua ,
  • Geng Weisheng ,
  • Cao Shixuan ,
  • He Zhengjie
Expand
  • a State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071;
    b Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300071

Received date: 2019-08-26

  Revised date: 2019-09-20

  Online published: 2019-09-25

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21472096, J1103306).

Abstract

Under the catalysis of chiral amine methylated quinidine, highly diastereo-and enantioselective cyclopropanation reactions of α-bromoketones with 3-(substituted methylene) oxindoles and electron-deficient 1,3-dienes have been realized respectively, providing corresponding functionalized 3,3-spirocyclopropyl oxindoles and vinylcyclopropanes in 46%~99% yields with up to 98% ee and up to 20:1 dr. Thus, a facile and complementary synthetic method for chiral title compounds is successfully develped by the catalytic ammonium ylide strategy.

Cite this article

Luo Jinghua , Geng Weisheng , Cao Shixuan , He Zhengjie . Catalytic Enantioselective Syntheses of Functionalized 3,3-Spirocyclopropyl Oxindoles and Vinylcyclopropanes via Ammonium Ylides Generated from α-Bromoketones[J]. Chinese Journal of Organic Chemistry, 2020 , 40(1) : 40 -52 . DOI: 10.6023/cjoc201908034

References

[1] For selected reviews, see:(a) Faust, R. Angew. Chem., Int. Ed. 2001, 40, 2251.
(b) Donaldson, W. A. Tetrahedron 2001, 57, 8589.
(c) Pietruszka, J. Chem. Rev. 2003, 103, 1051.
(d) Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. Rev. 2003, 103, 1625.
[2] (a) Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165.
(b) De Pol, S.; Zorn, C.; Klein, C. D.; Zerbe, O.; Reiser, O. Angew. Chem., Int. Ed. 2004, 43, 511.
(c) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151.
(d) Baldwin, J. E. Chem. Rev. 2003, 103, 1197.
[3] For leading reviews, see:(a) Salaün, J. Chem. Rev. 1989, 89, 1247.
(b) Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341.
(c) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
(d) Majumdar, S.; Meijere, A. de; Marek, I. Synlett 2002, 423.
(e) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977.
(f) Pellissier, H. Tetrahedron 2008, 64, 7041.
(g) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Synthesis 2014, 46, 979.
(h) Wu, W.; Lin, Z.; Jiang, H. Org. Biomol. Chem. 2018, 16, 7315.
(i) Dian, L.; Marek, I. Chem. Rev. 2018, 118, 8415.
[4] (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323.
(b) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.
[5] For recent reports, see:(a) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677.
(b) Chanthamath, S.; Iwasa, S. Acc. Chem. Res. 2016, 49, 2080.
(c) Reddy, B. V. S.; Rajasekaran, T.; Karthik, G.; Rao, T. P. Tetrahedron Lett. 2012, 53, 3416.
(d) Cao, Z.-Y.; Wang, X.; Tan, C.; Zhao, X.-L.; Zhou, J.; Ding, K. J. Am. Chem. Soc. 2013, 135, 8197.
(e) Cao, Z.-Y.; Zhou, F.; Yu, Y.-H.; Zhou, J. Org. Lett. 2013, 15, 42.
(f) Guo, J.; Liu, Y.; Li, X.; Liu, X.; Lin, L.; Feng, X. Chem. Sci. 2016, 7, 2717.
(g) Zhao, P.; Wu, S.; Ke, C.; Liu, X.; Feng, X. Chem. Commun. 2018, 54, 9837.
(h) Pons, A.; Tognetti, V.; Joubert, L.; Poisson, T.; Pannecoucke, X.; Charette, A. B.; Jubault, P. ACS Catal. 2019, 9, 2594.
(i) Dutta, P. K.; Chauhan, J.; Ravva, M. K.; Sen, S. Org. Lett. 2019, 21, 2025.
[6] For selected examples, see:(a) Zhao, B.-L.; Du, D.-M. Eur. J. Org. Chem. 2015, 5350.
(b) Noole, A.; Malkov, A. V.; Kanger, T. Synthesis 2013, 45, 2520.
(c) Ošeka, M.; Noole, A.; Žari, S.; Öeren, M.; Järving, I.; Lopp, M.; Kanger, T. Eur. J. Org. Chem. 2014, 3599.
(d) Noole, A.; Sucman, N. S.; Kabeshov, M. A.; Kanger, T.; Macaev, F. Z.; Malkov, A. V. Chem.-Eur. J. 2012, 18, 14929.
(e) Dou, X.; Lu, Y. Chem.-Eur. J. 2012, 18, 8315.
(f) Dou, X.; Yao, W.; Zhou, B.; Lu, Y. Chem. Commun. 2013, 49, 9224.
(g) Pesciaioli, F.; Righi, P.; Mazzanti, A.; Bartoli, G.; Bencivenni, G. Chem.-Eur. J. 2011, 17, 2842.
(h) Noole, A.; Ošeka, M.; Pehk, T.; Öeren, M.; Järving, I.; Elsegood, M. R. J.; Malkov, A. V.; Lopp, M.; Kanger, T. Adv. Synth. Catal. 2013, 355, 829.
(i) Li, J.-P.; Zhao, G.-F.; Wang, H.-X.; Xie, M.-S.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2017, 19, 6494. For selected examples of other cinchona alkaloid-catalyzed asymmetric reactions, see:
(j) Zheng, Y.-Q.; Luan, C.-F.; Wang, Z.-J.; Yao, Y.-Q.; Shi, Z.-C.; Li, X.-F.; Zhao, Z.-G.; Chen. F. Chin. Chem. Lett. 2016, 27, 25.
(k) Ran, G.-Y.; Wang, P.; Du, W.; Chen, Y.-C. Org. Chem. Front. 2016, 3, 861.
(l) Cao, S.-X.; Wang, J.-X.; He, Z.-J. Chin. Chem. Lett. 2018, 29, 201.
(m) Liao, K.; Hu, X.-S.; Zhu, R.-Y.; Rao, R.-H.; Yu, J.-S.; Zhou, F.; Zhou, J. Chin. J. Chem. 2019, 37, 799.
(n) Sun, B.-B.; Zhang, J.-Q.; Chen, J.-B.; Fan, W.-T.; Yu, J.-Q.; Hu, J.-M.; Wang, X.-W. Org. Chem. Front. 2019, 6, 1842.
[7] (a) Wang, L.; Cao, W.; Mei, H.; Hu, L.; Feng, X. Adv. Synth. Catal. 2018, 360, 4089.
(b) Kuang, Y.; Shen, B.; Dai, L.; Yao, Q.; Liu, X.; Lin, L.; Feng, X. Chem. Sci. 2018, 9, 688.
(c) Mei, H.; Pan, G.; Zhang, X.; Lin, L.; Liu, X.; Feng, X. Org. Lett. 2018, 20, 7794.
(d) Chandgude, A. L.; Ren, X.; Fasan, R. J. Am. Chem. Soc. 2019, 141, 9145.
[8] (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.
(b) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719.
[9] (a) Gaunt, M. J.; Johansson, C. C. C. Chem. Rev. 2007, 107, 5596.
(b) Jiang, K.; Chen, Y.-C. Tetrahedron Lett. 2014, 55, 2049.
(c) Roiser, L.; Zielke, K.; Waser, M. Asian J. Org. Chem. 2018, 7, 852.
[10] For most recent examples, see:(a) Roiser, L.; Zielke, K.; Waser, M. Synthesis 2018, 50, 4047.
(b) Luo, J.; Chen, R.; Fan, X.; Gong, J.; Han, J.; He, Z. Org. Biomol. Chem. 2019, 17, 6989.
[11] (a) Papageorgiou, C. D.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2003, 42, 828.
(b) Papageorgiou, C. D.; Cubillo de Dios, M. A.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2004, 43, 4641.
(c) Bremeyer, N.; Smith, S. C.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2004, 43, 2681.
(d) Johansson, C. C. C.; Bremeyer, N.; Ley, S. V.; Owen, D. R.; Smith, S. C.; Gaunt, M. J. Angew. Chem., Int. Ed. 2006, 45, 6024.
[12] (a) Roiser, L.; Waser, M. Org. Lett. 2017, 19, 2338.
(b) Pichler, M.; Novacek, J.; Robiette, R.; Poscher, V.; Himmelsbach, M.; Monkowius, U.; Müller, N.; Waser, M. Org. Biomol. Chem. 2015, 13, 2092.
(c) Yadav, L. D. S.; Garima, R. K. Synlett 2009, 3123.
[13] (a) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104.
(b) Ye, N.; Chen, H.; Wold, E. A.; Shi, P.; Zhou, J. ACS Infect. Dis. 2016, 2, 382.
(c) Pavlovska, T. L.; Redkin, R. G.; Lipson, V. V.; Atamanuk, D. V. Mol. Diversity 2016, 20, 299.
(d) Mei, G.-J.; Shi, F. Chem. Commun. 2018, 54, 6607.
[14] (a) Ye, S.; Huang, Z.-Z.; Xia, C.-A.; Tang, Y.; Dai, L.-X. J. Am. Chem. Soc. 2002, 124, 2432.
(b) Deng, X.-M.; Cai, P.; Ye, S.; Sun, X.-L.; Liao, W.-W.; Li, K.; Tang, Y.; Wu, Y,-D.; Dai, L.-X. J. Am. Chem. Soc. 2006, 128, 9730.
(c) Liao, W.-W.; Li, K.; Tang, Y. J. Am. Chem. Soc. 2003, 125, 13030.
(d) Li, Q.-Z.; Zhang, X.; Zeng, R.; Dai, Q.-S.; Liu, Y.; Shen, X.-D.; Leng, H.-J.; Yang, K.-C.; Li, J.-L. Org. Lett. 2018, 20, 3700.
[15] (a) Hammar, P.; Marcelli, T.; Hiemstra, H.; Himo, F. Adv. Synth. Catal. 2007, 349, 2537.
(b) France, S.; Wack, H.; Taggi, A. E.; Hafez, A. M.; Wagerle, T. R.; Shah, M. H.; Dusich, C. L.; Lectka, T. J. Am. Chem. Soc. 2004, 126, 4245.
(c) Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906.
[16] Yang, C.; Li, J.; Zhou, R.; Chen, X.; Gao, Y.; He, Z. Org. Biomol. Chem. 2015, 13, 4869.
[17] Jiang, X.; Fu, D.; Shi, X.; Wang, S.; Wang, R. Chem. Commun. 2011, 47, 8289.
Outlines

/