Iron-Catalyzed Deoxygenative Diborylation of Ketones to Internal gem-Diboronates

  • He Zeyu ,
  • Fan Min ,
  • Xu Jia'neng ,
  • Hu Yue ,
  • Wang Lu ,
  • Wu Xudong ,
  • Xia Chungu ,
  • Liu Chao
Expand
  • a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000;
    b University of Chinese Academy of Sciences, Beijing 100049;
    c Department of Chemistry and Chemical Engineering, Yibin University, Yibin, Sichuan 644007

Received date: 2019-09-06

  Revised date: 2019-09-18

  Online published: 2019-09-25

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 91745110, 21673261, 21603245, 21633013, 21703265, 21872156, 21802150), the Natural Science Foundation of Jiangsu Province (Nos. BK20181194, BK20180247), the Young Elite Scientist Sponsorship Program by China Association for Science and Technology (No. YESS20170217) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2018458).

Abstract

An iron catalyzed deoxygenative diborylation of ketones to access a variety of internal gem-diboronates has been developed. A scale-up synthesis of such gem-diboronates is also applicable under this condition. Meanwhile, common organic solvent acetone was used as start material to synthesize corresponding internal gem-diboronate, and further mono- or di-functionalization of such internal gem-diboronate has also been explored to demonstrate the synthetic potential of internal gem-diboronates.

Cite this article

He Zeyu , Fan Min , Xu Jia'neng , Hu Yue , Wang Lu , Wu Xudong , Xia Chungu , Liu Chao . Iron-Catalyzed Deoxygenative Diborylation of Ketones to Internal gem-Diboronates[J]. Chinese Journal of Organic Chemistry, 2019 , 39(12) : 3438 -3445 . DOI: 10.6023/cjoc201909008

References

[1] (a) Nallagonda, R.; Padala, K.; Masarwa, A. Org. Biomol. Chem. 2018, 16, 1050.
(b) Wu, C.; Wang, J. Tetrahedron Lett. 2018, 59, 2128.
(c) Zhang, Z.-Q.; Yang, C.-T.; Liang, L.-J.; Xiao, B.; Lu, X.; Liu, J.-H.; Sun, Y.-Y.; Marder, T. B.; Fu, Y. Org. Lett. 2014, 16, 6342.
(d) Zhang, Z.-Q.; Zhang, B.; Lu, X.; Liu, J.-H.; Lu, X.-Y.; Xiao, B.; Fu, Y. Org. Lett. 2016, 18, 952.
(e) Sun, W.; Wang, L.; Xia, C.; Liu, C. Angew. Chem., Int. Ed. 2018, 57, 5501.
(f) Brown, H. C.; Rhodes, S. P. J. Am. Chem. Soc. 1969, 91, 4306.
(g) Coombs, J. R.; Zhang, L.; Morken, J. P. Org. Lett. 2015, 17, 1708.
(h) Endo, K.; Hirokami, M.; Shibata, T. J. Org. Chem. 2010, 75, 3469.
(i) Endo, K.; Ohkubo, T.; Hirokami, M.; Shibata, T. J. Am. Chem. Soc. 2010, 132, 11033.
(j) Endo, K.; Ohkubo, T.; Ishioka, T.; Shibata, T. J. Org. Chem. 2012, 77, 4826.
(k) Endo, K.; Ohkubo, T.; Shibata, T. Org. Lett. 2011, 13, 3368.
(l) Hong, K.; Liu, X.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 10581.
(m) Jo, W.; Kim, J.; Choi, S.; Cho, S. H. Angew. Chem., Int. Ed. 2016, 55, 9690.
(n) Kim, J.; Park, S.; Park, J.; Cho, S. H. Angew. Chem., Int. Ed. 2016, 55, 1498.
(o) Li, H.; Zhang, Z.; Shangguan, X.; Huang, S.; Chen, J.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 11921.
(p) Matteson, D. S.; Moody, R. J. J. Am. Chem. Soc. 1977, 99, 3196.
(q) Matteson, D. S.; Moody, R. J. Organometallics 1982, 1, 20.
(r) Matteson, D. S.; Moody, R. J.; Jesthi, P. K. J. Am. Chem. Soc. 1975, 97, 5608.
(s) Park, J.; Lee, Y.; Kim, J.; Cho, S. H. Org. Lett. 2016, 18, 1210.
(t) Potter, B.; Edelstein, E. K.; Morken, J. P. Org. Lett. 2016, 18, 3286.
(u) Potter, B.; Szymaniak, A. A.; Edelstein, E. K.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 17918.
(v) Sun, C.; Potter, B.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 6534.
(w) Xu, S.; Shangguan, X.; Li, H.; Zhang, Y.; Wang, J. J. Org. Chem. 2015, 80, 7779.
(x) Zhan, M.; Li, R.-Z.; Mou, Z.-D.; Cao, C.-G.; Liu, J.; Chen, Y.-W.; Niu, D. ACS Catal. 2016, 6, 3381.
(y) Iacono, C. E.; Stephens, T. C.; Rajan, T. S.; Pattison, G. J. Am. Chem. Soc. 2018, 140, 2036.
(z) Kim, J.; Shin, M.; Cho, S. H. ACS Catal. 2019, 8503.
(aa) Kim, J.; Lee, E.; Cho, S. H. Asian J. Org. Chem. 2019, 8, 1664.
(ab) Lee, H.; Lee, Y.; Cho, S. H. Org. Lett. 2019, 21, 5912.
(ac) Kim, J.; Hwang, C.; Kim, Y.; Cho, S. H. Org. Process Res. Dev. 2019, 23, 1663.
(ad) Kim, J.; Cho, S. H. ACS Catal. 2019, 9, 230.
(ae) Park, J.; Choi, S.; Lee, Y.; Cho, S. H. Org. Lett. 2017, 19, 4054.
(af) Kim, J.; Ko, K.; Cho, S. H. Angew. Chem., Int. Ed. 2017, 56, 11584.
(ag) Lee, Y.; Park, J.; Cho, S. H. Angew. Chem., Int. Ed. 2018, 57, 12930.
[2] (a) Zheng, P.; Zhai, Y.; Zhao, X.; Xu, T. Chem. Commun. 2018, 54, 13375.
(b) Zheng, P.; Zhai, Y.; Zhao, X.; Xu, T. Org. Lett. 2019, 21, 393.
[3] (a) Zhao, H.; Tong, M.; Wang, H.; Xu, S. Org. Biomol. Chem. 2017, 15, 3418.
(b) Hwang, C.; Jo, W.; Cho, S. H. Chem. Commun. 2017, 53, 7573.
(c) Liu, X.; Deaton, T. M.; Haeffner, F.; Morken, J. P. Angew. Chem., Int. Ed. 2017, 56, 11485.
[4] (a) Harris, M. R.; Wisniewska, H. M.; Jiao, W.; Wang, X.; Bradow, J. N. Org. Lett. 2018, 20, 2867.
(b) Sandford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481.
(c) Liu, Y.; Zhang, W. Chin. J. Org. Chem. 2016, 36, 2249(in Chinese). (刘媛媛, 张万斌, 有机化学, 2016, 36, 2249.)
(d) Chen, D.; Xu, M.-H. Chin. J. Org. Chem. 2017, 37, 1589(in Chinese). (陈雕, 徐明华, 有机化学, 2017, 37, 1589.)
(e) Xu, X.; Cheng, R.; Qiu, Z.; Pan, C. Chin. J. Org. Chem. 2018, 38, 3078(in Chinese). (许新彬, 程若飞, 邱早早, 潘成岭, 有机化学, 2018, 38, 3078.)
[5] Li, Z.; Wang, Z.; Zhu, L.; Tan, X.; Li, C. J. Am. Chem. Soc. 2014, 136, 16439.
[6] Masaki, S.; Michael, S.; Ikuhiro, N.; Katsuhiro, S.; Takuya, K.; Tamejiro, H. Chem. Lett. 2006, 35, 1222.
[7] (a) Edelstein, E. K.; Grote, A. C.; Palkowitz, M. D.; Morken, J. P. Synlett 2018, 29, 1749.
(b) Li, X.; Hall, D. G. Angew. Chem., Int. Ed. 2018, 57, 10304.
[8] (a) Palmer, W. N.; Zarate, C.; Chirik, P. J. J. Am. Chem. Soc. 2017, 139, 2589.
(b) Zhang, L.; Huang, Z. J. Am. Chem. Soc. 2015, 137, 15600.
[9] (a) Brown, H. C.; Scouten, C. G.; Liotta, R. J. Am. Chem. Soc. 1979, 101, 96.
(b) Espinal-Viguri, M.; Woof, C. R.; Webster, R. L. Chem.-Eur. J. 2016, 22, 11605.
(c) He, T.; Li, B.; Liu, L.-C.; Wang, J.; Ma, W.-P.; Li, G.-Y.; Zhang, Q.-W.; He, W. Chem.-Eur. J. 2019, 25, 966.
(d) Yukimori, D.; Nagashima, Y.; Wang, C.; Muranaka, A.; Uchiyama, M. J. Am. Chem. Soc. 2019, 141, 9819.
(e) Yuma, N.; Naofumi, T. Lett. Org. Chem. 2017, 14, 243.
[10] Lee, S.; Li, D.; Yun, J. Chem.-Asian J. 2014, 9, 2440.
[11] (a) Li, H.; Shangguan, X.; Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Org. Lett. 2014, 16, 448.
(b) Cuenca, A. B.; Cid, J.; García-López, D.; Carbó, J. J.; Fernández, E. Org. Biomol. Chem. 2015, 13, 9659.
[12] (a) Abu Ali, H.; Goldberg, I.; Kaufmann, D.; Burmeister, C.; Srebnik, M. Organometallics 2002, 21, 1870.
(b) Wommack, A. J.; Kingsbury, J. S. Tetrahedron Lett. 2014, 55, 3163.
[13] Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017, 139, 5257.
[14] He, Z.; Zhu, Q.; Hu, X.; Wang, L.; Xia, C.; Liu, C. Org. Chem. Front. 2019, 6, 900.
[15] Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014, 6, 584.
[16] (a) Bedford, R. B.; Brenner, P. B.; Carter, E.; Gallagher, T.; Murphy, D. M.; Pye, D. R. Organometallics 2014, 33, 5940.
(b) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. J. Am. Chem. Soc. 2006, 128, 11036.
(c) Nakagawa, N.; Hatakeyama, T.; Nakamura, M. Chem.-Eur. J. 2015, 21, 4257.
(d) Zhao, H.; Dang, L.; Marder, T. B.; Lin, Z. J. Am. Chem. Soc. 2008, 130, 5586.
(e) Zhou, Y.; Wang, H.; Liu, Y.; Zhao, Y.; Zhang, C.; Qu, J. Org. Chem. Front. 2017, 4, 1580.
Outlines

/