Carbazole-Bridged NCN-Pincer Palladium Complex Catalyzed Direct C-H Arylation Reaction of Azoles

  • Song Wen-Yue ,
  • Rao Xiaofeng ,
  • Bu Qingqing ,
  • Liu Ning
Expand
  • a Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003;
    b Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518000

Received date: 2019-07-24

  Revised date: 2019-09-16

  Online published: 2019-10-09

Supported by

Project supported by the National Natural Science Foundation of China (No. U1603103).

Abstract

A new type of pincer palladium complexes C1~C6 based on the strong donor strength of carbazoles skeleton were synthesized. The air-and moisture-stable complexes C1~C6 act as efficient catalysts for the direct arylation of azoles with (hetero)aryl bromides in good to excellent yields with broad substrate scope used KOAc as sole base under aerobic conditions. It was demonstrated that this developed protocol was the most catalytic system for the direct C-H bond arylation for thiazoles under relatively mild reaction conditions at a low catalyst loading of 0.5 mol%.

Cite this article

Song Wen-Yue , Rao Xiaofeng , Bu Qingqing , Liu Ning . Carbazole-Bridged NCN-Pincer Palladium Complex Catalyzed Direct C-H Arylation Reaction of Azoles[J]. Chinese Journal of Organic Chemistry, 2020 , 40(2) : 489 -500 . DOI: 10.6023/cjoc201907035

References

[1] (a) Hayashi, S.; Yamamoto, S.-I.; Koizumi, T. Mater. Today Commun. 2018, 17, 259.
(b) Huang, J.; Lin, Z.; Feng, W.; Wang, W. Polymers 2019, 11, 55.
(c) Kojima, Y.; Hayashi, S.; Koizumi, T. J. Polym. Sci., Part A:Polym. Chem. 2017, 55, 1183.
(d) Lu, W.; Kuwabara, J.; Kuramochi, M.; Kanbara, T. J. Polym. Sci., Part A:Polym. Chem. 2015, 53, 1396.
(e) Hayashi, S.; Koizumi, T. Polym. Chem. 2015, 6, 5036.
(f) Sun, M.; Zhou, M.; Liang, L.; Wang, W.; Wang, W.; Ling, Q. Chin. J. Org. Chem. 2013, 33, 2504(in Chinese). (孙敏敏, 周铭露, 梁露英, 王维, 王文, 凌启淡, 有机化学, 2013, 33, 2504.)
[2] (a) Pasini, D.; Nitti, A.; Osw, P.; Abdullah, M.; Galbiati, A. Synlett 2018, 29, 2577.
(b) Sadowski, B.; Su, S.-H.; Lin, T.-C.; Lohrey, T. D.; De-perasińska, I.; Chou, P.-T.; Gryko, D. T. J. Mater. Chem. C 2018, 6, 12306.
[3] (a) Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y.-H.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem. 2002, 45, 1697.
(b) Loubidi, M.; Jouha, J.; Tber, Z.; Khouili, M.; Suzenet, F.; Akssira, M.; Erdogan, M. A.; Kose, F. A.; Dagci, T.; Armagan, G.; Saso, L.; Guillaumet, G. Eur. J. Med. Chem. 2018, 145, 113.
(c) Bellina, F.; Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G. Synthesis 2016, 48, 3821.
(d) Bellina, F.; Manzini, C.; Marianetti, G.; Pezzetta, C.; Fanizza, E.; Lessi, M.; Minei, P.; Barone, V.; Pucci, A. Dyes Pigm. 2016, 134, 118.
[4] (a) Li, Z.; Ip, F. C.; Ip, N. Y.; Tong, R. Chem.-Eur. J. 2015, 21, 11152.
(b) Ponnala, S.; Harding, W. W. Eur. J. Org. Chem. 2013, 3013, 1107.
(c) Blanchot, M.; Candito, D. A.; Larnaud, F.; Lautens, M. Org. Lett. 2011, 13, 1486.
(d) Liu, S.; Yuan, J.; Qu, L. Chin. J. Org. Chem. 2018, 38, 316(in Chinese). (刘帅楠, 袁金伟, 屈凌波, 有机化学, 2018, 38, 316.)
[5] (a) Fairlamb, I. J. Chem. Soc. Rev. 2007, 36, 1036.
(b) Yuan, K.; Doucet, H. ChemCatChem 2013, 5, 3495.
(c) Yuan, K.; Soulé, J.-F.; Doucet, H. ACS Catal. 2015, 5, 978.
(d) Mercier, L. G.; Leclerc, M. Acc. Chem. Res. 2013, 46, 1597.
(e) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
(f) Fabio, B.; Silvia, C.; Renzo, R. Curr. Org. Chem. 2008, 12, 774.
[6] (a) Roger, J.; Požgan, F.; Doucet, H. J. Org. Chem. 2009, 74, 1179.
(b) Takfaoui, A.; Zhao, L.; Touzani, R.; Soulé, J.-F.; Dixneuf, P. H.; Doucet, H. Tetrahedron 2014, 70, 8316.
(c) Roger, J.; Doucet, H. Tetrahedron 2009, 65, 9772.
[7] (a) Kondo, Y.; Komine, T.; Sakamoto, T. Org. Lett. 2000, 2, 3111.
(b) Iaroshenko, V. O.; Ashot, G.; Satenik, M.; Knar, A.; Tatevik, G.; Julietta, Y.; Alexander, V.; Peter, L. J. Org. Chem. 2015, 46, 2103.
(c) Liu, L.; Liu, Y.; Ling, B.; Bi, S. J. Organomet. Chem. 2017, 827, 56.
(d) Feng, J.; Li, B.; Jiang, J.; Zhang, M.; Ouyang, W.; Li, C.; Fu, Y.; Gu, Z. Chin. J. Chem. 2018, 36, 11.
(e) Wang, Y.; Yu, X.; Fu, H.; Zheng, X.; Chen, H.; Li, R. Chin. J. Org. Chem. 2019, 39, 482(in Chinese). (汪洋点点, 余晓军, 付海燕, 郑学丽, 陈华, 李瑞祥, 有机化学, 2019, 39, 482.)
[8] (a) Liegault, B.; Petrov, I.; Gorelsky, S. I.; Fagnou, K. J. Org. Chem. 2010, 75, 1047.
(b) Minami, Y.; Kodama, T.; Hiyama, T. Angew. Chem., Int. Ed. 2015, 54, 11813.
[9] Bellina, F.; Cauteruccio, S.; Mannina, L.; Rossi, R.; Viel, S. J. Org. Chem. 2005, 70, 3997.
[10] Chiong, H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449.
[11] (a) Ruch, A. A.; Handa, S.; Kong, F.; Nesterov, V. N.; Pahls, D. R.; Cundari, T. R.; Slaughter, L. M. Org. Biomol. Chem. 2016, 14, 8123.
(b) Huang, J.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674.
(c) Li, Y.; Wang, J.; Yan, B.; Huang, M.; Zhu, Y.; Wu, Y.; Wu, Y. Tetrahedron 2015, 71, 2729.
[12] (a) Bhaskar, R.; Sharma, A. K.; Singh, A. K. Organometallics 2018, 37, 2669.
(b) Lee, Y.-Y.; Zseng, H.-W.; Tsai, Z.-H.; Su, Y.-S.; Hu, C.-H.; Lee, H. M. Organometallics 2019, 38, 805.
(c) Guo, S.; Huynh, H. V. Organometallics 2014, 33, 2004.
(d) He, X.-X.; Li, Y.; Ma, B.-B.; Ke, Z.; Liu, F. S. Organometallics 2016, 35, 2655.
(e) Hu, L.-Q.; Deng, R.-L.; Li, Y.-F.; Zeng, C.-J.; Shen, D.-S.; Liu, F. S. Organometallics 2018, 37, 214.
(f) Kumar, P. V.; Lin, W.-S.; Shen, J.-S.; Nandi, D.; Lee, H. M. Organometallics 2011, 30, 5160.
(g) Li, H.-H.; Maitra, R.; Kuo, Y.-T.; Chen, J.-H.; Hu, C.-H.; Lee, H. M. Appl. Organomet. Chem. 2018, 32, e3956.
(h) Lee, J.-Y.; Shen, J.-S.; Tzeng, R.-J.; Lu, I. C.; Lii, J.-H.; Hu, C.-H.; Lee, H. M. Dalton. Trans. 2016, 45, 10375.
(i) Kaloğlu, M.; Kaloğlur, N.; Özdemir, İ. Chin. J. Chem. 2018, 36, 837.
[13] (a) Chen, F. M.; Lu, D. D.; Hu, L. Q.; Huang, J.; Liu, F. S. Org. Biomol. Chem. 2017, 15, 5731.
(b) Chen, F. M.; Huang, F. D.; Yao, X. Y.; Li, T.; Liu, F. S. Org. Chem. Front. 2017, 4, 2336.
(c) Ouyang, J. S.; Li, Y. F.; Shen, D. S.; Ke, Z.; Liu, F. S. Dalton Trans. 2016, 45, 14919.
[14] (a) Sych, G.; Volyniuk, D.; Bezvikonnyi, O.; Lytvyn, R.; Grazulevicius, J. V. J. Phys. Chem. C 2019, 123, 2386.
(b) Bhattacharjee, I.; Acharya, N.; Ray, D. Chem. Commun. 2019, 55, 1899.
(c) Suman, S.; Siddiqui, A.; Keshtov, M. L.; Sharma, G. D.; Singh, S. P. J. Mater. Chem. C 2019, 7, 543.
(d) Wong, M. Y.; Krotkus, S.; Copley, G.; Li, W.; Murawski, C.; Hall, D.; Hedley, G. J.; Jaricot, M.; Cordes, D. B.; Slawin, A. M. Z.; Olivier, Y.; Beljonne, D.; Muccioli, L.; Moral, M.; Sancho-Garcia, J. C.; Gather, M. C.; Samuel, I. D. W.; Zysman-Colman, E. ACS. Appl. Mater. Inter. 2018, 10, 33360.
[15] (a) Choi, T. A.; Czerwonka, R.; Forke, R.; Jäger, A.; Knöll, J.; Krahl, M. P.; Krause, T.; Reddy, K. R.; Franzblau, S. G.; Knölker, H.-J. Med. Chem. Res. 2008, 17, 374.
(b) Zhu, D.; Chen, M.; Li, M.; Luo, B.; Zhao, Y.; Huang, P.; Xue, F.; Rapposelli, S.; Pi, R.; Wen, S. Eur. J. Med. Chem. 2013, 68, 81.
(c) Cho, M. J.; Lee, U. R.; Kim, Y. S.; Shin, J.; Kim, Y. M.; Park, Y. W.; Ju, B.-K.; Jin, J.-I.; Choi, D. H. J. Polym. Sci., Part A:Polym. Chem. 2010, 48, 1913.
[16] (a) Tu, Y.-W.; Wang, C.-C.; Godana, A. S.; Yu, C.-Y. Eur. Polym. J. 2019, 112, 283.
(b) Xie, R.; Aplan, M. P.; Caggiano, N. J.; Weisen, A. R.; Su, T.; Müller, C.; Segad, M.; Colby, R. H.; Gomez, E. D. Macromole-cules 2018, 51, 10271.
(c) Park, M.-J.; Kwak, J.; Lee, J.; Jung, I. H.; Kong, H.; Lee, C.; Hwang, D.-H.; Shim, H.-K. Macromolecules 2010, 43, 1379.
[17] (a) Jones, A. W.; Rank, C. K.; Becker, Y.; Malchau, C.; Funes-Ar-doiz, I.; Maseras, F.; Patureau, F. W. Chem.-Eur. J. 2018, 24, 15178.
(b) Xiao, L.; Wang, H.; Zhang, Q.; Zhu, Y.; Luo, J.; Liang, Y.; Zhang, S.; Zhou, H.; Tian, Y.; Wu, J. Dyes Pigm. 2015, 113, 165.
(c) Pryjomska-Ray, I.; Zornik, D.; Pätzel, M.; Krause, K. B.; Grubert, L.; Braun-Cula, B.; Hecht, S.; Limberg, C. Chem.-Eur. J. 2018, 24, 5341.
[18] (a) Li, Q.; Wei, Q.; Xie, P.; Liu, L.; Zhong, X.-X.; Li, F.-B.; Zhu, N.-Y.; Wong, W.-Y.; Chan, W. T.-K.; Qin, H.-M.; Alharbi, N. S. J. Coord. Chem. 2018, 71, 4072.
(b) Yu, Z.-J.; Chen, H.; Lennox, A. J. J.; Yan, L.-J.; Liu, X.-F.; Xu, D.-D.; Chen, F.; Xu, L.-X.; Li, Y.; Wu, Q.-A. Luo, S.-P. Dyes. Pigm. 2019, 162, 771.
[19] (a) Bettington, S.; Tavasli, M.; Bryce, M. R.; Beeby, A.; Al-Attar, H.; Monkman, A. P. Chem.-Eur. J. 2007, 13, 1423.
(b) Liu, C.; Rao, X.; Lv, X.; Qiu, J.; Jin, Z. Dyes Pigm. 2014, 109, 13.
[20] (a) Okamura, N.; Egawa, K.; Maeda, T.; Yagi, S. New J. Chem. 2018, 42, 11583.
(b) Al-Balushi, R. A.; Haque, A.; Jayapal, M.; Al-Suti, M. K.; Husband, J.; Khan, M. S.; Koentjoro, O. F.; Molloy, K. C.; Skelton, J. M.; Raithby, P. R. Inorg. Chem. 2016, 55, 6465.
[21] Grüger, N.; Rodríguez, L.-I.; Wadepohl, H.; Gade, L. H. Inorg. Chem. 2013, 52, 2050.
[22] Inoue, M.; Suzuki, T.; Nakada, M. J. Am. Chem. Soc. 2003, 125, 1140.
[23] Jurgens, E.; Wucher, B.; Rominger, F.; Tornroos, K. W.; Kunz, D. Chem. Commun. 2015, 51, 1897.
[24] Ott, J. C.; Blasius, C. K.; Wadepohl, H.; Gade, L. H. Inorg. Chem. 2018, 57, 3183.
[25] (a) Chen, F.; Liu, N.; Dai, B. ACS Sustainable Chem. Eng. 2017, 5, 9065.
(b) Liu, N.; Xie, Y.-F.; Wang, C.; Li, S.-J.; Wei, D.; Li, M.; Dai, B. ACS Catal. 2018, 8, 9945.
(c) Chen, F.; Chen, D.; Shi, L.; Liu, N.; Dai, B. J. CO2 Util. 2016, 16, 391.
(d) Chen, F.; Li, M.; Wang, J.; Dai, B.; Liu, N. J. CO2 Util. 2018, 28, 181.
(e) Xie, Y.-F.; Guo, C.; Shi, L.; Peng, B.-H.; Liu, N. Org. Biomol. Chem. 2019, 17, 3497.
[26] Tao, S.; Guo, C.; Liu, N.; Dai, B. Organometallics 2017, 36, 4432.
[27] Tao, S.; Wang, R.-J.; Liu, N.; Dai, B. ChemistrySelect 2017, 2, 2282.
[28] (a) Bheeter, C. B.; Chen, L.; Soulé, J.-F.; Doucet, H. Catal. Sci. Technol. 2016, 6, 2005.
(b) Gorelsky, S. I. Coord. Chem. Rev. 2013, 257, 153.
[29] (a) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem. 2012, 77, 658.
(b) Liégault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826.
(c) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496.
(d) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848.
[30] (a) Dong, J. J.; Roger, J.; Verrier, C.; Martin, T.; Le Goff, R.; Hoarau, C.; Doucet, H. Green Chem. 2010, 12, 2053.
(b) Brahim, M.; Smari, I.; Ben Ammar, H.; Ben Hassine, B.; Soulé, J.-F.; Doucet, H. Org. Chem. Front. 2015, 2, 917.
[31] Baghbanzadeh, M.; Pilger, C.; Kappe, C. O. J. Org. Chem. 2011, 76, 8138.
[32] Perego, L. A.; Grimaud, L.; Bellina, F. Adv. Synth. Catal. 2016, 358, 597.
[33] René, O.; Fagnou, K. Adv. Synth. Catal. 2010, 352, 2116.
[34] Jiang, W.; Guan, J.; Macielag, M. J.; Zhang, S.; Qiu, Y.; Kraft, P.; Bhattacharjee, S.; John, T. M.; Haynes-Johnson, D.; Lundeen, S.; Sui, Z. J. Med. Chem. 2005, 48, 2126.
[35] Bensaid, S.; Laidaoui, N.; El Abed, D.; Kacimi, S.; Doucet, H. Tetrahedron Lett. 2011, 52, 1383.
[36] He, X.-X.; Li, Y.-F.; Huang, J.; Shen, D.-S.; Liu, F. S. J. Organomet. Chem. 2016, 803, 58.
[37] Liu, X.-W.; Shi, J.-L.; Yan, J.-X.; Wei, J.-B.; Peng, K.; Dai, L.; Li, C.-G.; Wang, B.-Q.; Shi, Z.-J. Org. Lett. 2013, 15, 5774.
[38] Fall, Y.; Reynaud, C.; Doucet, H.; Santelli, M. Eur. J. Org. Chem. 2009, 2009, 4041.
[39] Molander, G. A.; Canturk, B.; Kennedy, L. E. J. Org. Chem. 2009, 74, 973.
[40] Labadie, S. S. Synth. Commun. 1994, 24, 709.
Outlines

/