Research Progress in Ligand-Assisted Copper-Catalyzed C-N Cross-Coupling Reaction in Aqueous Media or Pure Water

  • Jianwei Xie ,
  • Xiaochuang Wang ,
  • Fengtian Wu ,
  • Jie Zhang
Expand
  • a College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199
    b Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003
    c Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013

Received date: 2019-07-29

  Online published: 2019-10-09

Supported by

the National Natural Science Foundation of China(21606153);the National Natural Science Foundation of China(21868032)

Abstract

Copper-catalyzed Ullmann-type C-N coupling reaction is one of the most effective methods to construct the C-N bonds. Water, as green and clean solvent, has been successfully employed in various organic reactions. According to the structure of ligands, the progress of ligand-assisted copper-catalyzed C-N cross-coupling reaction in aqueous media or pure water is summarized comprehensively, and the ligands include diamines, hydrazides, phenanthrolines, carbohydrates, pyridine-N-oxides, quinolines, oximes and salen. In addition, ligand-free copper-catalyzed C-N coupling reactions in aquous media or pure water are also reviewed.

Cite this article

Jianwei Xie , Xiaochuang Wang , Fengtian Wu , Jie Zhang . Research Progress in Ligand-Assisted Copper-Catalyzed C-N Cross-Coupling Reaction in Aqueous Media or Pure Water[J]. Chinese Journal of Organic Chemistry, 2019 , 39(11) : 3026 -3039 . DOI: 10.6023/cjoc201907051

References

[1] Evano G. Blanchard N. Toumi M. Chem. Rev. 2008 108 3054.
[2] (a) Hartwig, J. F. In Palladium-Catalyzed Amination of Aryl Halides and Related Reactions, Wiley, New York, 2002.
[2] (b) Jiang, L.; Buchwald, S. L. In Palladium-catalyzed Aromatic carbon-nitrogen Bond Formation in Metal-catalyzed Cross- coupling Reactions, 2nd ed., Wiley-VCH, Weinheim, 2004.
[2] (c) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.
[2] (d) Beletskaya, I. P.; Cheprakov, A. V. Organometallics 2012, 31, 7753.
[3] Kosugi M. Kameyama M. Migita T. Chem. Lett. 1983 927.
[4] (a) Ullmann, F.; Bielecki, J. Ber. Dtsch. Chem. Ges. 1901, 34, 2174.
[4] (b) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382.
[5] Wolter M. Nordamann G. Job G. E. Buchwald S. L. Org. Lett. 2002 4 973.
[6] Nordamann G. Buchwald S. L. J. Am. Chem. Soc. 2003 125 4978.
[7] (a) Dai, L. Prog. Chem. 2018, 30, 1257 (in Chinese).
[7] (戴立信, 化学进展, 2018, 30, 1257.)
[7] (b) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525.
[7] (c) Ribas, X.; Gueell, I. Pure Appl. Chem. 2014, 86, 345.
[7] (d) Okano, K.; Tokuyama, H.; Fukuyama, T. Chem. Commun. 2014, 50, 13650.
[7] (e) Li, Z.; Wu, Z.; Deng, H.; Zhou, X. Chin. J. Org. Chem. 2013, 33, 760 (in Chinese).
[7] (李正凯, 吴之清, 邓杭, 周向葛, 有机化学, 2013, 33, 760.)
[7] (f) Chen, Y.; Sun, L. Chin. J. Org. Chem. 2013, 33, 877 (in Chinese).
[7] (成宜娟, 孙丽萍, 有机化学, 2013, 33, 877.)
[7] (g) Bariwal, J.; Van der Eychen, E. Chem. Soc. Rev. 2013, 42, 9283.
[7] (h) Wang, Y.; Zeng, J.; Cui, X. Chin. J. Org. Chem. 2010, 30, 181 (in Chinese).
[7] (王晔峰, 曾京辉, 崔晓瑞, 有机化学, 2010, 30, 181.)
[7] (i) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.
[7] (j) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096.
[8] Poliakoff M. Fitzpatrick J.-M. Farren T.-R. Anastas P. T. Science 2002 297 807.
[9] Li, C.-J.; Chan, T.-H. In Comprehensive Organic Reactions in Aqueous Media, 2nd ed., John Wiley & Sons, New Jersey, 2007.
[10] Carril M. SanMartin R. Domínguez E. Tellitu I. Green Chem. 2007 9 219.
[11] Barbero N. Carril M. SanMartin R. Domínguez E. Tetrahedron 2008 64 7283.
[12] Oshovsky G. V. Ouali A. Xia N. Zablocka M. Boeré R. T. Duhayon C. Taillefer M. Majoral J. P. Organometallics 2008 27 5733.
[13] Swapna K. Murthy S. N. Nageswar Y. V. D. Eur. J. Org. Chem. 2010 2010 6678.
[14] Peng J. Ye M. Zong C. Hu F. Feng L. Wang X. Wang Y. Chen C. J. Org. Chem. 2011 76 716.
[15] Malakar C. C. Baskakova A. Conrad J. Beifuss U. Chem.-Eur. J. 2012 18 8882.
[16] Shang X. Zhao S. Chen W. Chen C. Qiu H. Chem.-Eur. J. 2014 20 1825.
[17] Shao B. Du H. Hao X. Lu R. Luo Y. Zhang S. Chin. J. Chem. Eng. 2016 24 1000.
[18] Bollenbach M. Aquino P. G. V. de Araújo-Júnior J. X. Bourguignon J.-J. Bihel F. Salomé C. Wagner P. Schmitt M. Chem.- Eur. J. 2017 23 13676.
[19] Ding X. Bai J. Wang H. Zhao B. Li J. Ren F. Tetrahedron 2017 73 172.
[20] Zhu X. Ma Y. Su L. Song H. Chen G. Liang D. Wan Y. Synthesis 2006 3955.
[21] Zhu X. H. Su L. Huang L. Chen G. Wang J. Song H. Wan Y. Eur. J. Org. Chem. 2009 2009 635.
[22] Xie J. W. Zhu X. H. Huang M. N. Chen W. Wan Y. Eur. J. Org. Chem. 2010 2010 3219.
[23] Meng F. Zhu X. H. Li Y. Xie J. Wang B. Yao J. Wan Y. Eur. J. Org. Chem. 2010 2010 6149.
[24] Li Y. Zhu X. H. Meng F. Wan Y. Tetrahedron 2011 67 5450.
[25] Huang M. Lin X. Zhu X. Peng W. Xie J. Wan Y. Eur. J. Org. Chem. 2011 2011 4523.
[26] Kurandina D. V. Eliseenkov E. V. Khaibulova T. S. Petrov A. A. Boyarskiy V. P. Tetrahedron 2015 71 7931.
[27] Huang L. Yu R. Zhu X. Wan Y. Tetrahedron 2013 69 8974.
[28] Yang B. Mao Z. Zhu X. Wan Y. Catal. Commun. 2015 6 92.
[29] Engel-Andreasen J. Shimpukade B. Ulven T. Green Chem. 2013 15 336.
[30] Xu H. Luo C. Li Z. Xiang H. Zhou X. J. Heterocycl. Chem. 2016 53 1207.
[31] Thakur K. G. Ganapathy D. Sekar G. Chem. Commun. 2011 47 5076.
[32] Thakur K. G. Srinivas K. S. Chiranjeevi K. Sekar G. Green Chem. 2011 13 2326.
[33] Huang M. Wang L. Zhu X. Mao Z. Kuang D. Wan Y. Eur. J. Org. Chem. 2012 2012 4897.
[34] Wen M. Shen C. Wang L. Zhang P. Jin J. RSC Adv. 2015 5 1522.
[35] Ge X. Chen X. Qian C. Zhou S. RSC Adv. 2016 6 29638.
[36] Ge X. Zhang S. Chen X. Liu X. Qian C. Green Chem. 2019 21 2771.
[37] Zhou G. Chen W. Zhang S. Liu X. Yang Z. Ge X. Fan H.-J. Synlett 2019 193
[38] Liang L. Li Z. K. Zhou X. G. Org. Lett. 2009 11 3294.
[39] Wang Y. Zhang Y. Yang B. Zhang A. Yao Q. Org. Biomol. Chem. 2015 13 4101.
[40] Wang Y. Ling J. Zhang Y. Zhang A. Yao Q. Eur. J. Org. Chem. 2015 2015 4153.
[41] Wu F.-T. Yan N.-N. Liu P. Xie J.-W. Liu Y. Dai B. Tetrahedron Lett. 2014 55 3249.
[42] Wang X. Meng F. Zhang J. Xie J. Dai B. Catal. Lett. 2018 148 1142.
[43] Xie J.-W. Yao Z.-B. Wang X.-C. Zhang J. Tetrahedron 2019 75 3788.
[44] Wang X. Zhang J. Xie J. Chem. J. Chin. Univ. 2017 38 1178.
[44] 汪 小创 张 洁 谢 建伟 高等学校化学学报 2017 38 1178.
[45] Karayannis N. M. Pytlewski L. L. Mikulski C. M. Coord. Chem. Rev. 1973 11 93.
[46] Yan N.-N. Wu F.-T. Zhang J. Wei Q.-B. Liu P. Xie J.-W. Dai B. Asian J. Org. Chem. 2014 3 1159.
[47] Liu L. Frohn M. Xi N. Dominguez C. Hungate R. Reider P. J. J. Org. Chem. 2005 70 10135.
[48] Zhang J. X. Yin H. Q. Han S. Q. Chin. J. Org. Chem. 2012 32 1429.
[48] 张 敬先 殷 慧清 韩 世清 有机化学 2012 32 1429.
[49] Li X. Yang D. Jiang Y. Fu H. Green Chem. 2010 12 1097.
[50] Wu X. Hu W. Chin. J. Chem. 2011 29 2124.
[51] Wang D. Zhang F. Kuang D. Yu J. Li J. Green Chem. 2012 14 1268.
[52] Wang D. Kuang D. Zhang F. Yang C. Zhu X. Adv. Synth. Catal. 2015 357 714.
[53] Wang D. Zheng Y. Yang M. Zhang F. Mao F. Yu J. Xia X. Org. Biomol. Chem. 2017 15 8009.
[54] Bollenbach M. Wagner P. Aquino P. G. V. Bourguignon J.-J. Bihel F. Salomé C. Schmitt M. ChemSusChem 2016 9 3244.
[55] Sharma K. K. Mandloi M. Rai N. Jain R. RSC Adv. 2016 6 96762.
[56] Ferlin F. Trombettoni V. Luciani L. Fusi S. Piermatti O. Santoro S. Vaccaro L. Green Chem. 2018 20 1634.
[57] Kumar S. V. Ma D. Chin. J. Chem. 2018 36 1003.
[58] Zhou Q. Du F. Chen Y. Fu Y. Chen G. Tetrahedron Lett. 2019 60 1938.
[59] Wang Y. Wu Z. Wang L. Li Z. Zhou X. Chem. Eur. J. 2009 15 8971.
[60] Wu Z. Jiang Z. Wu D. Xiang H. Zhou X. Eur. J. Org. Chem. 2010 2010 1854.
[61] Wu Z. Zhou L. Jiang Z. Wu D. Li Z. Zhou X. Eur. J. Org. Chem. 2010 2010 4971.
[62] Yu L. Zhou X. Wu D. Xiang H. J. Organomet. Chem. 2012 705 75.
[63] Pellón R. F. Carrasco R. Rodés L. Synth. Commun. 1993 23 1447.
[64] R?ttger S. Sj?berg P. J. R. Larhed M. J. Comb. Chem. 2007 9 204.
[65] Xu H.-J. Zheng F.-Y. Liang Y.-F. Cai Z.-Y. Feng Y.-S. Che D.-Q. Tetrahedron Lett. 2010 51 669.
[66] Mukhopadhyay C. Tapaswi P. K. Butcher R. J. Org. Biomol. Chem. 2010 8 4720.
[67] Xu H.-J. Liang Y.-F. Cai Z.-Y. Qi H.-X. Yang C.-Y. Feng Y.-S. J. Org. Chem. 2011 76 2296.
[68] Yong F.-F. Teo Y.-C. Tay S.-H. Tan B. Y.-H. Lim K.-H. Tetrahedron Lett. 2011 52 1161.
[69] Yong F.-F. Teo Y.-C. Chua G.-L. Lim G. S. Lin Y. Tetrahedron Lett. 2011 52 1169.
[70] Jiao J. Zhang X.-R. Chang N.-H. Wang J. Wei J.-F. Shi X.-Y. Chen Z.-G. J. Org. Chem. 2011 76 1180.
[71] Jin M. Zhao D. He G. Tong Y. Han S. Chin. J. Catal. 2013 34 1651.
[72] Tan B. Y.-H. Teo Y.-C. Seow A.-H. Eur. J. Org. Chem. 2014 2014 1541.
[73] Heidarizadeh F. Majdi-nasab A. Tetrahedron Lett. 2015 56 6360.
[74] Kumari S. Shakoor S. M. A. Bajaj K. Nanjegowda S. H. Mallu P. Sakhuja R. Tetrahedron Lett. 2016 57 2732.
[75] Ge X. Chen X. Qian C. Zhou S. RSC Adv. 2016 6 58898.
[76] Pogula J. Laha S. Likhar P. R. Catal. Lett. 2017 147 2724.
[77] Albadi J. Jalali M. Samimi H. A. Catal. Lett. 2018 148 3750.
[78] Singh G. Kumar M. Bhalla V. Green Chem. 2018 20 5346.
Outlines

/