Recent Progress of Discrete Metallacycles Based on the Half-Sandwich Ir/Rh/Ru Motifs

  • Liu Jinbao ,
  • Li Peng ,
  • Yao Zijian
Expand
  • a Department of Science and Technology, Shanghai Urban Construction Vocational College, Shanghai 201415;
    b School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418

Received date: 2019-08-05

  Revised date: 2019-09-17

  Online published: 2019-10-09

Supported by

Project supported by the National Natural Science Foundation of China (No. 21601125), the Chenguang Scholar of Shanghai Municipal Education Commission (Nos. 16CG64, 18CGB12).

Abstract

Discrete metallacycle complexes have attracted considerable attention because of their widely used in host-guest chemistry, gas adsorption, molecular recognition and catalysis. Thus exploring new framework complexes, studying their physical and chemical properties and applications have become one of the most active and exciting areas of inorganic chemistry, organic chemistry and supramolecular chemistry. Half-sandwich organometallic units based on ruthenium, iridium and rhodium are often utilized to prepare diverse metallacylce complexes due to the following advantages:the solubility of these metal complexes can be enhanced, the hemisphere of the metal center is perfectly shielded, minimizing the complexity of reactions, and the products with different structures are easily synthesized. In this paper, the synthesis and application of discrete type metal framework complexes with half-sandwich structures of ruthenium, iridium and rhodium are reviewed.

Cite this article

Liu Jinbao , Li Peng , Yao Zijian . Recent Progress of Discrete Metallacycles Based on the Half-Sandwich Ir/Rh/Ru Motifs[J]. Chinese Journal of Organic Chemistry, 2020 , 40(2) : 364 -375 . DOI: 10.6023/cjoc201908009

References

[1] Swiegers, G. F.; Malefetse, T. J. Chem. Rev. 2000, 100, 3483.
[2] Thomas, J. A. Chem. Soc. Rev. 2007, 36, 856.
[3] Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022.
[4] Gianneschi, N. C.; Masar, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825.
[5] James, S. L. Chem. Soc. Rev. 2003, 32, 276.
[6] Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196.
[7] Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810.
[8] Pluth, M. D.; Raymond, K. N. Chem. Soc. Rev. 2007, 36, 161.
[9] Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418.
[10] Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2009, 42, 1650.
[11] Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Chem. Soc. Rev. 2008, 37, 247.
[12] (a) Harris, K.; Fujita, D.; Fujita, M. Chem. Commun. 2013, 49, 6703.
(b) Ma, L.-L.; An, Y.-Y.; Sun, L.-Y.; Wang, Y.-Y.; Hahn, F. E.; Han, Y.-F. Angew. Chem., Int. Ed. 2019, 58, 3986.
(c) Wang, Y.-S.; Feng, T.; Wang, Y.-Y.; Hahn, F. E.; Han, Y.-F. Angew. Chem., Int. Ed. 2018, 57, 15767.
(d) Sun, L.-Y.; Sinha, N.; Yan, T.; Wang, Y.-S.; Tan, T. T. Y.; Yu, L.; Han, Y.-F.; Hahn, F. E. Angew. Chem., Int. Ed. 2018, 57, 5161.
(e) Gan, M.-M.; Liu, J.-Q.; Zhang, L.; Wang, Y.-Y.; Hahn, F. E.; Han, Y.-F. Chem. Rev. 2018, 118, 9587.
[13] Cook, T. R.; Zheng, Y. R.; Stang, P. J. Chem. Rev. 2013, 113, 734.
[14] Granzhan, A.; Riis-johannessen, T.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2010, 49, 5515.
[15] Forgan, R. S.; Sauvage, J. P.; Stoddart, F. J. Chem. Rev. 2011, 111, 5434.
[16] Fujita, M.; Yazaki, J.; Ogura, K. J. Am. Chem. Soc. 1990, 112, 5645.
[17] Stang, P. J.; Cao, D.-H. J. Am. Chem. Soc. 1994, 116, 4981.
[18] Klausmeyer, K. K.; Rauchfuss, T. B.; Wilson, S. R. Angew. Chem., Int. Ed. 1998, 37, 1694.
[19] Severin, K. Chem. Commun. 2006, 3859.
[20] Han, Y.-F.; Jin, G.-X. Chem. Soc. Rev. 2014, 43, 2799.
[21] Karkas, M. D.; Verho, O.; Johnston, E. V.; Akermark, B. Chem. Rev. 2014, 114, 11863.
[22] Yao, Z.-J.; Li, K.; Li, P.; Deng, W. J. Organomet. Chem. 2017, 846, 208.
[23] Thomsen, J. M.; Huang, D. L.; Crabtree, R. H.; Brudvig, G. W. Dalton Trans. 2015, 44, 12452.
[24] Han, Y.-F.; Jia, W.-G.; Yu, W.-B.; Jin, G.-X. Chem. Soc. Rev. 2009, 38, 3419.
[25] Han, Y.-F.; Jin, G.-X. Acc. Chem. Res. 2014, 47, 3571.
[26] Zhang, Y.-Y.; Gao, W.-X.; Lin, L.; Jin, G.-X. Coord. Chem. Rev. 2017, 344, 323.
[27] Han, Y.-F.; Lin, Y.-J.; Jia, W.-G.; Weng, L.-H.; Jin, G.-X. Organometallics 2007, 26, 5848.
[28] (a) Zhang, W.-Z.; Han, Y.-F.; Lin, Y.-J.; Jin, G.-X. Organometallics 2010, 29, 2842.
(b) Gou, X.-X.; Peng, J.-X.; Das, R.; Wang, Y.-Y.; Han, Y.-F. Dalton Trans. 2019, 48, 7236.
(c) Zhang, W.-Y.; Lin, Y.-J.; Han, Y.-F.; Jin, G.-X. J. Am. Chem. Soc. 2016, 138, 10700.
[29] Han, Y.-F.; Jia, W.-G.; Lin, Y.-J.; Jin, G.-X. Angew. Chem., Int. Ed. 2009, 48, 6234.
[30] Han, Y.-F.; Fei, Y.; Jin, G.-X. Dalton Trans. 2010, 39, 3976.
[31] Han, Y.-F.; Lin, Y.-J.; Jin, G.-X. Dalton Trans. 2011, 40, 10370.
[32] Lin, Y.-J.; Han, Y.-F.; Jin, G.-X. J. Organomet. Chem. 2012, 708, 31.
[33] Zhang, H.-N.; Gao, W.-X.; Deng, Y.-X.; Lin, Y.-J.; Jin, G.-X. Chem. Commun. 2018, 54, 1559.
[34] Bergamo, A.; Gaiddon, C.; Schellens, J. H. M.; Beijnen, J. H.; Sava, G. J. Inorg. Biochem. 2012, 106, 90.
[35] Rademaker-lakhai, J. M.; Van den Bongard, D.; Pluim, D.; Beijnen, J. H.; Schellens, J. H. M. Clin. Cancer Res. 2004, 10, 3717.
[36] Mari, C.; Pierroz, V.; Ferrari, S.; Gasser, G. Chem. Sci. 2015, 46, 2660.
[37] Schmitt, F.; Govindaswamy, P.; Suss-Fink, G.; Ang, W. H.; Dyson, P. J.; Juillerat-Jeanneret, L.; Therrien, B. J. Med. Chem. 2008, 51, 1811.
[38] Mannancherril, V.; Therrien, B. Inorg. Chem. 2018, 57, 3626.
[39] Mattsson, J.; Govindaswamy, P.; Renfrew, A. K.; Dyson, P. J.; Štěpnička, P.; Süss-Fink, G.; Therrien, B. Organometallics 2009, 28, 4350.
[40] Gupta, G.; Murray, B. S.; Dyson, P. J.; Therrien, B. Materials 2013, 6, 5352.
[41] Liu, J.-J.; Lin, Y.-J.; Jin, G.-X. Organometallics 2014, 33, 1283.
[42] Singh, N.; Jang, S.; Jo, J. H.; Kim, D. H.; Park, D. Y.; Kim, I.; Kim, H.; Kang, S. C.; Chi, K. W. Chem.-Eur. J. 2016, 22, 16157.
[43] Gupta, G.; Das, A.; Ghate, N. B.; Kim, T. H.; Ryu, J. Y.; Lee, J.; Mandal, N.; Lee, C. Y. Chem. Commun. 2016, 52, 4274.
[44] Gupta, G.; Das, A.; Panja, S.; Ryu, J. Y.; Lee, J.; Mandal, N.; Lee, C. Y. Chem.-Eur. J. 2017.23, 17199.
[45] Wu, T.; Weng, L.-H.; Jin, G.-X. Chem. Commun. 2012, 48, 4435.
[46] Guo, B.-B.; Gao, W.-X.; Lin, Y.-J.; Jin, G.-X. Dalton Trans. 2018, 47, 7701.
[47] Han, Y.-F.; Lin, Y.-J.; Jia, W.-G.; Jin, G.-X. Dalton Trans. 2009, 2077.
[48] Han, Y.-F.; Li, H.; Zheng, Z.-F.; Jin, G.-X. Chem.-Asian J. 2012, 7, 1243.
[49] Han, Y.-F.; Jin, G.-X. Chem.-Asian J. 2011, 6, 1348.
[50] Han, Y.-F.; Lin, Y.-J.; Hor, T. S. A.; Jin, G.-X. Organometallics 2012, 31, 995.
[51] Therrien, B.; Suss-fink, G.; Govindaswamy, P.; Renfrew, A. K.; Dyson, P. J. Angew. Chem., Int. Ed. 2008, 47, 3773.
[52] Yi, J. W.; Barry, N. P. E.; Furrer, M. A.; Zava, O.; Dyson, P. J.; Therrien, B.; Kim, B. H. Bioconjugate Chem. 2012, 23, 461.
[53] Furrer, M. A.; Schmitt, F.; Wiederkehr, M.; Juillerat-Jeanneret, L.; Therrien, B. Dalton Trans. 2012, 41, 7201.
[54] Pitto-barry, A.; Barry, N. P. E.; Zava, O.; Deschenaux, R.; Dyson, P. J.; Therrien, B. Chem.-Eur. J. 2011, 17, 1966.
[55] Therrien, B. CrystEngComm 2015, 17, 484.
[56] Pitto-barry, A.; Zava, O.; Dyson, P. J.; Deschenaux, R.; Therrien, B. Inorg. Chem. 2012, 51, 7119.
[57] Chen, J.; Qiu, X.; Ouyang, J.; Kong, J.; Zhong, W.; Xing, M. Biomacromolecules 2014, 12, 3601.
[58] Minghui, Y.; Fritz, W.; Biprajit, S.; Amine, G.; Pierre, B.; Lucie, R.; Bruno, T. Organometallics 2014, 33, 5043.
[59] Singh, J.; Park, D. W.; Kim, D. H.; Singh, N.; Kang, S. C.; Chi, K. W. ACS Omega 2019, 4, 10810.
[60] Vajpayee, V.; Lee, S.; Kang, S. C.; Cook, T. R.; Kim, H.; Kim, D. W.; Verma, S.; Lah, M. S.; Kim, I. S.; Wang, M.; Stang, P. J.; Chi, K. W. Dalton Trans. 2013, 42, 466.
[61] Vajpayee, V.; Yang, Y. J.; Kang, S. C.; Kim, C.; Kim, I. S.; Wang, M.; Stang, P. J.; Chi, K. W. Chem. Commun. 2011, 47, 5184.
[62] Wang, M.; Vajpayee, V.; Shanmugaraju, S.; Zheng, Y. R.; Zhao, Z. G.; Kim, H.; Mukherjee, P. S.; Chi, K. W.; Stang, P. J. Inorg. Chem. 2011, 50, 1506.
[63] Vajpayee, V.; Song, Y. H.; Cook, T. R.; Kim, H.; Lee, Y.; Stang, P. J.; Chi, K. W. J. Am. Chem. Soc. 2011, 133, 19646.
[64] Vajpayee, V.; Song, Y.-H.; Jung, Y.-J.; Kang, S.-C.; Kim, H.; Kim, I. S.; Wang, M.; Cook, T. R.; Stang, P. J.; Chi, K. W. Dalton Trans. 2012, 41, 3046.
[65] Vajpayee, V.; Lee, S.; Park, J. W.; Dubey, A.; Kim, H.; Cook, T. R.; Stang, P. J.; Chi, K. W. Organometallics 2013, 32, 1563.
[66] Singh, N.; Jo, J. H.; Song, Y. H.; Kim, H.; Kim, D.; Lah, M. S.; Chi, K. W. Chem. Commun. 2015, 51, 4492.
[67] Han, Y.-F.; Lin, Y.-J.; Weng, L.-H.; Berke, H.; Jin, G.-X. Chem. Commun. 2008, 350.
[68] Barry, N. P. E.; Austeri, M.; Lacour, J.; Therrien, B. Organometallics 2009, 28, 4894.
[69] Barry, N. P. E.; Zava, O.; Dyson, P. J.; Therrien, B. Aust. J. Chem. 2010, 63, 1529.
[70] Oldacre, A. N.; Friedman, A. E.; Cook, T. R. J. Am. Chem. Soc. 2017, 139, 1424.
[71] Ryu, J. Y.; Park, Y. J.; Park, H. R.; Saha, M. L.; Stang, P. J.; Lee, J. J. Am. Chem. Soc. 2015, 137, 13018.
[72] Ryu, J. Y.; Wi, E. H.; Pait, M.; Lee, S.; Stang, P. J.; Lee, J. Inorg. Chem. 2017, 56, 5471.
[73] Singh, N.; Singh, J.; Kim, D.; Kim, D. H.; Kim, E. H.; Lah, M. S.; Chi, K. W. Inorg. Chem. 2018, 57, 3521.
[74] Huang, S.-L.; Hor, T. S. A.; Jin, G.-X. Coord. Chem. Rev. 2017, 333, 1.
[75] Ayme, J. F.; Beves, J. E.; Leigh, D. A.; McBuney, R. T.; Rissanen, K.; Schultz, D. Nat. Chem. 2012, 4, 15.
[76] Thorp-greenwood, F. L.; Kulak, A. N.; Hardie, M. J. Nat. Chem. 2015, 7, 526.
[77] Mcconnell, A. J.; Wood, C. S.; Neelakandan, P. P.; Nitschke, J. R. Chem. Rev. 2015, 115, 7729.
[78] Smulders, M. M. J.; Riddell, I. A.; Browne, C.; Nitschke, J. R. Chem. Soc. Rev. 2013, 42, 1728.
[79] Wang, W.; Wang, Y.-X.; Yang, H.-B. Chem. Soc. Rev. 2016, 45, 2656.
[80] Lu, Y.; Lin, Y.-J.; Li, Z.-H.; Jin, G.-X. Chin. J. Chem. 2018, 36, 106.
[81] Huang, S.-L.; Lin, Y.-J.; Hor, T. S. A.; Jin, G.-X. J. Am. Chem. Soc. 2013, 135, 8125.
[82] Huang, S.-L.; Lin, Y.-J.; Lin, Z.-H.; Jin, G.-X. Angew. Chem., Int. Ed. 2014, 53, 11218.
[83] Lu, Y.; Deng, Y.-X.; Lin, Y.-J.; Han, Y.-F.; Weng, L.-H.; Lin, Z.-H.; Jin, G.-X. Chem 2017, 3, 110.
[84] Zhang, L.; Lin, L.; Liu, D.; Lin, Y.-J.; Lin, Z.-H.; Jin, G.-X. J. Am. Chem. Soc. 2017, 139, 1653.
[85] Lu, Y.; Zhang, H.-N.; Jin, G.-X. Acc. Chem. Res. 2018, 51, 2148.
[86] Kim, T.; Singh, N.; Oh, J.; Kim, E. H.; Jung, J.; Kim, H.; Chi, K. W. J. Am. Chem. Soc. 2016, 138, 8368.
[87] Singh, N.; Kim, D.; Kim, D. H.; Kim, E. H.; Kim, H.; Lah, M. S.; Chi, K. W. Dalton Trans. 2017, 46, 571.
[88] Song, Y.-H.; Singh, N.; Jung, J.; Kim, H.; Kim, E. H.; Cheong, H. K.; Kim, Y. Angew. Chem., Int. Ed. 2016, 55, 2007.
[89] Mishra, A.; Dubey, A.; Min, J. W.; Kim, H.; Stang, P. J.; Chi, K. W. Chem. Commun. 2014, 50, 7542.
Outlines

/